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LONGITUDINAL STABILITY AND CONTROL 

OF A DUCTED-ROTOR FLYING PLATFORM 

V 
SUMMARY 

"An analysis is presented for the prediction of the longitudinal 

stability and control characteristics of a ducted-rotor/lying Platform. 

The stability characteristics of this vehicle are corroborated by the 

investigations and exhibited rather clearly by various stability diagrams 

Artificial stabilization is discussed and can be used to stabilize 

certain configurations.   The predictions of excessive trim requirements 

and large tilt angles for forward flight are substantiated.   Also, the 

effects of changing duct design and vertical center of gravity location 

on the stability derivatives are discussed, and material is presented 

to reflect the degree to which these changes can be used as aids 

in stabilizing the Platform.  

viii 
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LONGITUDINAL STABILITY AND CONTROL 

OF A DUG TED-ROTOR FLYING PLATFORM 

INTRODUCTION 

The ducted-rotor Flying Platform l£ essentially a stand-on type, VTOL, 

lifting device operated by a pilot.    Lift is produced by two, counter-rotating, 

non-articulated, rotors located below the pilot's stand-on platform and 

powered by reciprocating engines.  (Fig.  1) 

The conventional control systems of airplanes and helicopters are 

eliminated, since control is primarily obtained by the method often refer- 

red to as "kinesthetic control".    (Ref.  1) 

Longitudinal and lateral control is maintained when the pilot, acting 

as an automatic feedback by his instinctive balancing reactions, provides 

the correcting moment necessary to control and stabilize the machine after 

a disturbance.   In steady forward flight he provides the required control 

moment by shifting his weight and leaning in the direction of the desired 

motion. 

Directional control is obtained through the movement of yaw vanes 

located In the duct and operated by the twist grip handle bars, which also 

provide a method for power adjustment. 

In this Report, all reference? to the- term 'Flying Flatlorm" snould 

be construed to mean the subject vehicle. 

The purpose r.f this Report is "O predict and understand,   by 

theoretical and    ^.iytical studies, the attainable flying qualities asso- 

ciated with the stability and control of the ducted-rotor Flying Platform 

as affected by changes In duct design, v'^rticel caattf of gravity location 

and artificial stabilization. AJ 



The ducted-rotor Flying Platform has been flying for many years 

and several models have been built. 

Stability and control problems have developed for the longitudinal 

mode of motion of these machines.   The main difficulties are associated 

with large nose-up pitching moments, poor gust response, large tilt 

angles for forward flight and marginal handling qualities. 

For the studies in this Report, equations of motion based on small 

perturbation theory were developed and the static stability derivatives 

were calculated from data obtained by wind tunnel tests performed at 

the David Taylor Model Basin.    (Ref. 2) 

Variations in vertical center of gravity location, together with radi- 

cally different duct designs,  (Fig. 2), were analyzed for their effect on 

the stability and control of the vehicle. 

The effects of artificial stabilization of the type used on vehicles 

of this design were also considered. 

....... 



NOTATION 

a 

L 

c 

f 

Y   n 
Y  \2 T-W 

kY=1\lY/m 

rn 

P 

q 

t 

XT 

slope of blade section lift curve per radian 

number of blades 

chord length of duct (ft.) 

equivalent flat plate area of pilot 

(approximately 9 sq. ft.) 

non-dimensional moment of inertia parameter (0.0108) 

radius of gyration (ft.) 

distance between drag center of pilot and center 

of gravity of gross weight aircraft (ft.) 

mass of complete aircraft (slugs)    " 
_ 

poles for root locus for C 
m 

dynamic pressure (lbs. per sq. ft.) 

time (sec.) 

distance between Me of action of thrust force and 

center of gravity of gross weight aircraft (ft.) 

zero for root locus for C 
m 

• 

Zj»  lp cos a 

'H 

A, B, C, D, E 

V V CH' D 
H 

distance between line of action of pilot drag force 

and center of gravity of gross weight aircraft 

(ft.) 

distance between line of action of H-force and 

center of gravity of gross weight aircraft (ft.) 

coefficients of the characteristic equation in 

forward flight 

coefficients of the characteristic equation in 

hover 

i 



t 
Cl' C2 ' C3 ' Di' D2 'D3     1      increments to coefficients of characteristic 
ErE2 

CD ' S'"2/2 

H 
H     pTTR2 ( ßR)2 

C     =~^ 
m '   pTTR2(ßR)2R 

c„ • 
T     pirR" (ßR) 

2 roD^2 

W     pit 

^CT 

Q 
da 

acx. 

H 

H 

da 

m 
a a« 

m 

H 
d(Ae) 

c        .^2 
m 

d( Ae) 
-££■—m   . ad(Ae) 

] equations for C      and C      in root locus equation 
m m 

M <* 

drag coefficient of pilot where C   ' = f/S 
s 

H-force coefficient 

pitching moment coefficient 

thrust coefficient 

weight coefficient 

1 
static stability force and moment 

coefficient derivatives,  (moments 

taken about the quarter chord) 

CT   ' CT  ' CH  ' C 
a u a i 

G      , C      , C 
o        IL        d(AG) 

M 

I     overall values of force and moment coefficient 

derivatives 

D = f p V2 / 2 

'X 

drag force of the pilot (lbs.) 

horizontal force (lbs) 

total force measured along X body axis (lbs.) 

*"» 
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total force measured along 2 body axis (lbs.) 

H 

h mk. 

X 

L.C.EK 
f 

M = M„ - M. 
eg 

M 
c/4 

M. 

M, 
eg 

R 

I^LBP 

S.C.D. 

T 

V 

w 

total force parallel to rotor disc (lbs.) 

pitching moment of inertia of gross weight 
2, 

aircraft (approximately 125 slug-ft.   ) 

gain of artificial stabilization feedback loop 

Long Chord Duct 

pitching moment excluding pilot control moment, 

measured about Y axis (ft.-Iba.) 

aerodynamic moment created by the aircraft, 

without pilot, measured about the c/4 

point (ft. -lbs.) 

control moment exerted by the pilot (ft.-lbs.) 

totdi moment measured about the Y axis (ft.-lbs.) 

period of oscillation (sec ) 

also poles for root locus for C m 
Q 

rotor radius (3.5 ft.) 

also Routh's diacnminaat 

abbreviation for Root Locus Break Points 
2 

area of rotor (ft.   ) 
0 

Short Chord Duct 
■ 

total thrust, force of duct and rotor measured 

normal to the rotor disc (lbs.) 

^Iso time to half or double amplitude (sec.) 

also time constant for phase lag of artificial 

stabilization feedback loop 

resultant velocity of aircraft (ft. per sec.) 

gross weight of complete aircraft including 

pilot (550 lbs.) 



X,Y,Z 

z 

P 

T = 

^R 

m 
prrR^^R 

body a^is system 

zero for root locus for C m a 

angle of attack, angle between relative^ind 

vector and plane perpendicular to the rotor 

axis (radians) 

flight path angle measured with reference to 

horizon (radians) 

aircraft pitch angle with reference to horizon 

(radians) 

root of the characteristic equation 

tip speed ratio or velocity ratio 

air density (slugs per cubic ft.) 

aerodynamic time Isec.) 
■ 

rotor angular velocity (radians per sec.) 

General 

„.  4f ) 
' di*/,.) >        differential operator forms for time ratio t/r 

[, 

J 

(" ) z 

(  ). 

A(   ) 

differential operator forms for time t 

subscript zero designates initial condition 

before perturbation 

designates i/erturbation quantities 

- 



DEVELOPMENT 

Equations of Longitudinal Motion 

The development of the equations of motion for this system is based 

on the commonly used methods for the study of aeronautical dynamics. 

The basic theory is the familiar small perturbation theory that assumes 

the disturbed motion of the aircraft to be one of small oscillations about 

some steady-state flight condition. 

As usual, the equations of motion are written in accordance with 

the Newtonian laws of motion with the Important requirement that all 

accelerations and rates of change of moments of momentum must be 

expressed along aÖces fixed in space. 

Equations of motion, as well as other Important work in this 

area, have been developed at the Advanced Research Division of Hiller 

Aircraft Company by G. J. S'ssingh and A. H. Sacks. 

Also, dynamic stability of a machine similar to a Flying Platform 

has been treated at Princeton University in Refs. 3 and 4. 

The development of the equations of motion in this Report follows 

the latter work, the principle differences being in definition and notation. 

For the specific case of the longitudinal motion of the Flying 

Platform, we have a dynamic system with three degrees of freedom; namely, 

translation forward or backward, translation upward or downward and 

rotation about the pitch axis. 

This system will be described sufficiently by three equations of 

motion for the so-called control-fixed case similar to that studied in 

airplane dynamics.   The control-fixed case of the Flying Platform can 

be thought of as the condition where the pilot remains rigid on the 

Platform, from the initial condition, and induces no new or additional 

increments of control movement throughout the motion to be studied. 

:■:;....;.;  ^,,■■.■,■ .,.-■.■.,.>,■;:■,,:.:_,■,.,.;.,■,        ■ ■ 
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In order to facilitate the description of these motions, choice is 

made of the Eulerian or moving axis system fixed within the aircraft and 

always moving with it.  For this axis system, the standard N.A.S.A. 

right-hand axis system is selected with the positive X, Y, 2, axes 

in the forward, right side, and downward directions respectively. 

Choosing these axes as body axes, the origin will always be located at 

the center of gravity and will move slightly with respect to the aircraft 

whenever the center ot gravjty is shifted.   The positive X axis is directed 

toward the front of the aircraft, parallel to the rotor plane, and 

aligned with the relative wind in azimuth but not necessarily in pitch. 

The positive Z axis is directed downward, perpendicular to the rotor 

plane, i.e. aligned parallel to the thrust line or rotor shaft. 

The Y axis will be the aircraft pitching axis located at the 

center of gravity.   This axis system, with notation for the forces, 

moments, and displacements, is shown in Fig. 3. 

In this discussion, the forces and moments to be resolved along 

and about the body axis system, together with other notation, are 

described as follows: 

H- 
eg, 

M c/4 

total moment measured about the Y axis located at the 

center of gravity. Clockwise or nose-up moments 

are considered positive. 

aerodynamic moment created by the aircraft without pilot 

and measured positive clockwise (uose-up) about 

the quarter chord point.    (This notation arises from 

the wind tunnel balance design for measuring H- 

force and moments in connection with data re- 

duction when transferring moments to an arbitrary 

m ./ 

■     ..-.I'-   .:,.....     .   .::.„.   .,, 
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H 

x. 

'D 

axis located at the so-called quarter chord point. 

This quarter chord axis is parallel to the Y axis 

and passes through the thrust line at the quarter 

chord point.) 

total gross weight of the aircraft,  including pilot and 

all components 

force measured positive     upward along rotor shaft 

line,  perpendicular to the rotor plane and parallel, 

but directed opposite to the positive Z direction 

force measured perpendicularly to T force and in the X 

direction.   It is taken as acting in the quarter 

chord plane parallel to the rotor plane.    The H- 

force Is positive (as in the case of forward flight) 

when acting aft or in the negative X direction. 

drag of the pilot measured parallel to the relative wind 

and acting at the d» ig center of the pilot.   Drag 

Center and center of gravity location of the pilot 

alone were assumed to coincide.   Also, aerodynamic 

lift caused by the pilot was assumed to be neg- 

ligible. 

moment arm for T force or displacement of center of gravity 

from thrust line measured along X direction.   Dis- 

tance is positive when center of gravity is displaced 

aft of thrust line, and negative when forward of 

thrust line as in the case of forward flight. 

moment arm for drag force of pilot where Zp« 1   cosa 

and 1    is the distance from the total center of 

gravity position to the drag center of the pilot 

as shown in Fig.   1 . 
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'H 
moment arm for H-force or distance along Z 

direction, between the center of gravity and 

the line of H-force. 

a angle of attack, measured between the rotor tip path 

plane and the relative wind where nose-up is 

positive alpha.    (Alpha is negative in forward flight.) 

6 attitude or pitch angle, measured between rotor tip path 

plane and the horizon where nose-up is positive 

theta. 

y flight path, angle measured to the horizon.   As shown in 

Fig, 3, 7 = 0-0- where gamma is negative as shown. 

In the development Df the equations of motion of the Flying Platform, 

it is assumed that the disturbed motion of the aircraft is one of small 

displacements or oscillations about each steady-state equilibrium-trim 

flight condition.   This steady-state equilibrium-trim condition is achieved 

whenever the summation of all the aerodynamic and gravity forces acting 

on the aircraft equals zero.   Also, with regard to the inertia terms, the 

Newtonian laws of motion apply to any axis system, provided that the 

forces and moments are resolved along and about the particular axis 

system and that the accelerations expressed along and about these 

axes are the true accelerations with reference to fixed space. 

With these considerations the dynamic equations of motion may be 

written in the form: 

^ ' X 'x 
+ f 

x ' y 
ffKODrwMic 6XAV/TY INERTIA 

0 

11= F + h_ + r 
'2 

-0 
ttf£RT/A 

^,/(\ 
-/- 

e.g. g- 
Mv 

0 

(la) 

(lb) 

(lc) 

AERODYC/AM/C '^.g. WftiTlA 



il 

Resolving the aerodynamic and gravity contributions along body 

axes (Fig. 3), the steady-state equations of motion become; 

'z^tz^"    ~ U sino£ +\/JccsO - 0 
A ^ Q 

Using tine small angle assumptions where: 

$1% sf ?! of COS of ^    / 

sin 6-6 cos Ö  » / 

{2a) 

(2 b) 

(2 c) 

(3) 

the steady-state equations are: 

Fx.+ rx_ = -H-D-WÖ = o 
A Q 

(4a) 

F^.t Fa = -T-o/D+W^o 
e 

v = MC/i-H-2u -T-x^D-?. =0 
Expressing the Inertia contributions by using the Newtonian 

frame of reference of fixed axes and body axes as the moving axes, 

the inertia terms become: 

(4b) 

(4 c) 

(5a) 

F^ /m Vrc*sc/-~s???^svi</=/?v VY ~/w Yof (5 b) 

I 
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Icg.j r (5c) 

These lne-Ua terms arise when an aircraft accelerates, along a 

curved flight path as shown in Fig. 4, where the forces and moments are 

expressed as d'AIembert's inertia-resistance reactions.   It should be noted 

that the Z component of m^ namely, the contribution - m^ a, is small « 

compared to the contribution of the Z component of centrifugal force mVy and 

is hereafter omitted from F_ , since it is assumed to be a higher order term. 

No similar conclusions can üe made about the relative size of the X com- 

ponents of these forces so that both contributions must be retained in F 

Summing all the forces and moments as stated in Eq. 1, the 

longitudinal dynamic equations of motion for the Flying Platform become 

H-Force Equation 

Thrust Equation 

V 

{6a) 

rFH 
= -T-^D + W+ **Vr = o 
Moment Equation 

(6b) 

^vc/ny4-H-zH 
+ T-vD-HD-lYö - o   (6c) 

in addition to the small perturbation assumptions, it is assumed that 

the changes in the external forces and moments acting on the Platform, 

because of the small departure from steady-state motion, will depend 

entirely on the displacement and disturbance velocities along and about 

the aircraft axis, and also that the frequency of the motions is low so that 

the external forces and moments do not depend on the accelerations involved. 
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Expanding all the aerodynamic forces and moments of the former 

set of equations as a Taylor series in the appropriate variables, but neg- 

leC'.ing the higher order terms; 

^^|£^l?^+- 
"^o'^*'* §&**+§§*e+-:' 

and letting: 

o 

e •= e +A9 

V -   V0   r&V 

r = e - of 

e ^ erj + *e      e = AG 

y S V£ ^ AV      V = AV 

*      •    0 

(7a) 

(7b) 

(7 c) 

(7d) 

(8) 

where   the delta variables denote tae perturbations and a   ,  0   and V 
ODD 

are equal to zero, since it is assumed that the motion takes place about 

some steady-state trimmed flight condition where the initial rates are 

zero. 

Also, during the disturbed mjtion of the aircraft, the rotor angular 

velocity   ii   is assumed constant, so that A^i   = AV/i2R . 

■ ' 



14 

Now solving the longitudinal dynamic equations (Eq. 6) in terms 

of the perturbations, the convenient substitution of Eq. 6b into Eq. 6a 

may be made: 

zm)/ i T*  T+oS£> - W 

so that Eq    6a becomes: 

(6b) 

£p-= -,mv>- *£(r+*fö»w)~H~D~We = o (9) 

Substituting fq. 7 and Eq.  8 into Eq. 9 and neglecting higher order terms , 

the H-Force equation becomes: 

Z/i--*nt-#a~%-Wae~'t(ra-W+<S0Da)-S&yi 

For the initial steady-state condition (subscript o) before any 

acceleration occurred, Eq. 4 may be written as: 

(10) 

vo~öo-we, - C (Ha) 

-To -<% + W=c 
(lib) 

(lie) 

Substituting Eq.  11a and Eq.  lib in Eq.  10 reduces the H-Force equation 



n 
15 

|ÄAö(r-|fA^-.#-Ä^- WAS BtS Be d/c   / 

(12) 

2 2 
Nun-dimensionalizing this equation by dividing Eq.  12 by prrR    (iiR)    and 

treating  the drag term as: 

r » /)  r -  —^— 
"b      />7r#*(aR)Z     prrfiUClkf     lSr ö z 

(i3a) 

where: 

then: 

(i3b) 

Sic        BM l 0 ^ '     L*  9M    ?J /     0 OU, Oil ¥ 
(14) 

Also introducing the aerodynamic time parameter: 

r - ytH/ 

pTrRiJThS 

and using the notation: 

dL(Vr) 

(16) 

(16) 

where time is counted in the dimensionless time ratio t/r   , the H-Force 

equation in the usual aerodynamic form is: 

I 
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[cy'<crA'A c.'' 4^» ♦ ['v ' < ^J*< 

D ♦i c^ + c„ .d] 
(17) 

^a = o 

The thrust force equation nay be developed directly from Eq. 6b using 

the same methods; 

snvr- T-GtD-+w^o 
(6b) 

and using Eq.  15 and Eq.  16 with Eq    8: 
« 

dB *d C&B) 
i') 

the thrust force equation becomes: 

cy<Aco AA- * VJ° AoS~ A d AG =0   (is) 

For the moment equation (Eq. 6c)non-dimensionalization is accomplished 
2 2 2 

by using prrR    (i2R)    R , and defining 1^= mk.      or; 

k J, 
Y /?72/ 

and 
/ r 

where k    is the radius of gyration and hy is the non-dimensiona] 

moment of inertia parameter. 

us; 

. ■ 



The moment equation Is: 

^'7F*Ai%\¥* + Vc^ f 

Hence, the three equations of motion in familiar aerodynamic form are 

Eqs.  17,  18 and 20. 

H-Force Equation 

(20) 

r 
J   / Off L > / 

Of  l J' 
IV "JA*) / 

(l-7) 

«?^#J /^<9  = 0 

Thrust Equation 

Cr.**C**C*Jyi.rlC * 

Moment Equation 

^ ^ '&/*<*]**-UdVQ-o (i8) 

r 

L t> *     /: *1 

(2 0) 

-Vlr^ -d-O ^.d-hYi\e* o 
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Explanation of the Terms of the Equations of Motion 

The three equations of motion are simultaneous, homogeneous, 

ordinary, differential equations with constant coefficients.   These constant 

coefficients are expressed by stability derivatives, velocity ratios, a 

non-dimensional inertia parameter, angle measurements and drag coeffi- 
C        C G 

cients.    In this Report, the stability derivatives    H   ,     H   ,     T- 
C        C C ß a        f 

T  ,     m    aHd    m     are  evaluated from data obtained by wind tunnel 
aß a 

experiment.   The method of evaluating the stability derivatives and drag 

terms is explained in the Appendices. 

The individual terms, expressed in non-dimensional or coefficient 

form, in the equations of motion,  in effect, represent the following: 

Term 

H 
M 

2. G 
H 

a 

1. C^  • A/i represents the H-Force due to the change Z\u in the volo- 
C 

city ratio where    H   is the rate of change of H-Force 
^ C coefficient with velocity ratio.   For the case of    H 

H-Force obtained from wind tunnel data included the 

measurement of all the aerodynamic forces of the rotor 

and duct assembly acting normal to lhe thrust axis. 

A a represents the H-Force due to a change ^ a in the angle 
Q 

of attack where    H   is the rate of change of H-Force 
a 

coefficient with angle of attack. 

A ß represents the thrust force due tc a change AJJ in velo- 

city ratio where     T   is the rate of change of thrust force u 
coefficient with velocity ratio. 

Q 
For the case of    T  , thrust force obtained from the 

M 
wind tunnel data, included the measurement of ail the 

aerodynamic forces of the rotor and duct assembly acting 

along the thrust axis, 

• Ao represents the thrust force due to the change Ao^ in 
Q 

angle of attack where    T   is the rate of change of thrust 

3. C, 
M 

CT 
a 

-   . 

c  o 

" - - ■"■ * 
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19. 

force coefficient with angle of attack, 

represents the drag force in the X direction contri- 

buted by the pilot due to the change s/j in the velocity 

ratio.   The term C    ' equals -r—and fj    is the initial, 
D 

R 

6. a  u G   ' Au 
o O   D 

2 

m 

•steady-state velocity ratio, 

(See Appendix I for additional explanation of terms 5,6, 

and 7.) 

represents the drag force in the Z direction, contributed by 

the pilot, due to the change a^ in the velocity ratio.   The 

initial, steady-state angle of attack is defined as a   . 
o 

Cn ' A a    represents the drag force in the Z direction contributed 

by the pilot due to the change Ac in the angle of attack. 

8. C_   • ^ represents the moment contribution measured about the 

quarter chord point, due to the change A/i in the velocity 
Q 

ratio where    m   is the stability derivative denoting the 

rate of change of pitching moment coefficient about 

the quarter chord point with velocity ratio. 

The atabllily derivative    'm   was evaluated in wind 

tunnel experiments by measuring the moment created by 

the duct and rotor only.   This moment was arbitrarily 

transferred to the quarter chord point for convenience 

in accomplishing additional transfers when vertical e.g. 

location was varied in order to study the effect on the 

stability derivatives.   Changes in vortical e.g. loca- 

tion change the distances e   , x  , and a   . 

Ao- represents the moment contribution measured about the 

quarter chord point due to the change Aa in the angle of 
Q 

attack where     m    is the rate of change of pitching moment 

coefficient about the quarter chord point with angle of 

attack.   This derivative was evaluated as explained in 

term 8. 

m 
o 
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R 

20. 

C     Aß represents the moment contribution about the 
u C center of gravity due to the thrust force    T • &u 

ß 
acting at the moment arm x  . 

Ao     represents the moment contribution about the center 

of gravity due to the thrust force    T   • Aa acting at the 
a 

moment arm x^,. 
T z 

12. -^C^   «Ajti     represents the moment contribution about the center of 
R     H _ 

ß gravity due to the H-Force    H    • &u acting at the 

moment arm zTT. H 
ac    represents the moment contribution about the center of 

xT 

13    =S-C 16'    R UH 
gravity due to the H-Force    H    •^o- acting at the moment 

di.n z 
'D 

H' 
14. -^-u C^'Au   represents the moment contribution about the center of 

R     o   D 
gravity due to the drag force n Q   ' Aß acting parallel to 

the relative wind.   The perpendicular distance from the 

center of gravity to the line of action of this drag force 

is the moment arm z 

represents the weight force component in the X direction 

due to a change AQ in attitude angle of the machine.   For 

the comnonent C,.,Ö in the X direction   C,.r6   drops out 
W Wo 

from Eq. 12 due to the Initial condition (Eq. 11a) so that: 

15 cwA8 

C    • « 0    6    + C   AQ 
W Wo        W 

or; 

Gw8 c   ^e w 
However, in the thrust equation, the weight term has no 

perturbation component and drops out entirely from Eq. 

6b due to Eq.  lib. 

aHUHMHIMHtt|H{HIM[ 

i 
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16.   C -dC^e) represents the additional H-Force due to the linear 

velocity caused by an angular pitch rate d(A9) about the 

center of gravity. 
C The derivative    H .,. n. represents the rate of 

change of H-Force coefficient with pitching velocity 

 H .    HJ/ -A" d^ö) represents the moment contribution about the center 17 

of gravity due to the H-Force ""H./, 0.acting at the moment 

arm 2   .    This term can be thought of as a contribution to 
H 

the damping in pitch of the aircraft. 

18. C . d(^0) represents the moment contribution due to the pitch 

rate d(Ae).   This term is the familiar pitch damping term 

and in these equations refers to the pitch damping cre- 

ated by the rotor and duct.    Determination of this value 

is difficult but an attempt has been made to evaluate the 

rotor and duct contribution to pitch damping in Appendix II. 

19. d(A^) represents the component along the X axis of the inertia 

term due to a linear acceleration of the aircraft. 

—taken together, these terms represent the 

component along the Z axis of the centrifugal force 

inertia term caused by the rate of change of flight 

path angle 7. 

21. a   C    AM + a   CT   ^Q taken together, these terms represent the 

component along the X axis of the centrifugal force inertia 

term caused by the rate of change of flight path angle 7. 

The form of this term is due to the substitution performed 

in Eq.  9 where £q.  6b: 

20. ß d(Aa) - M d(^9) 
o o 

^i/^ =  T+'<Sij -W (6b) 
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wad substituted into the H-Force equation as a matter 

of convenience in solving the set of equations.   If 

Eq,  6a had been solved as it stands, this inertia term 

would have been in a '.orm similar to term 20 in the 

thrust equation.   However, the centrifugal force compo- 

nent in the X direction, mV-ya, of Eq. 6a, after the mathe- 

matical substitution and operations, takes the form of 

term 21: 

This indicates that this bodv axis inertia term is now 

represented by components of forces parallel to the rela- 

tive wind.   All terms in the original equations represent 

the summation of forces and moments along and about body 

axes and.  in this case, because of the aforementioned 

substitution, the body axis inertia force is represented 

by components of forces parallel to the relative wind. 

However, these still represent only the body axis inertia 

term and the equations are still consistent with the body 

axis frame of reference.   Changes in variables and sub- 

stitntlons among the set ot Eq.  6 in no way change the 

validity or meaning of the original body axes equations 

of motion describing the dynamic system. 

22. lid  (Ae) represents the pitching moment inertia term due to the 

distribution of the mass of the vehicle where h    is the 

non-dimensional moment of inertia parameter measured 
2 

about the Y axis.   The term d   (Aft) represents the per- 

turbation angular acceleration about the Y axis measured 

with respect to the time ratio (t/r) as indicated by the 

symbol (d). 

■  ■   ■■ -icim'immmi-.  , 

f 

. 
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Solution of the Equations of Motion 

In order to solve the equations of motion the form is altered 

slightly by letting:       « ^ 

^'^^<C 

%*%*<AC* 

&       'of     '2      & 

(2 Ja) 

(2 lb) 

{21c) 

(2 Id) 

(2 i e) 

C      z r 
OC ft 

* *x.C,   ~ i* r 
(2 If) 

(2 ig) 

where the bars over the stability derivatives indicate the overall or total 

values of the forces and moments of each specific derivative acting along 

or about the axes. 

Trom the above notations    it La possible to see that changes in 
c c vertical e.g. location will affect the values of    m   and    m   because of 
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Q 
changes in zTT/ z   , and x_.    Tl-e term    m,/Art. will not change radically 

Q H      D T d(Ae) 
since    H ,, A „. is a rather small quantity. 

d(Ae) 
Also, the moment of inertia about the Y axis I  , Is held constant 

for this dynamic analysis. 

Using this notation, Eqs. 17,  18 and 20 take the form: 

H-Force Equation; 

[ C^+djyc 'V >o6  + c +cH 
IY . <£u# = 0 

d(*e) 
(22 a) 

T-Force Equation 

[^V+l^'MJ^-fad 
Moment Equation 

F>MC-J Ao£. d 

AB ~ o 

-hYl] 

(22 b) 

^6*0   (22c) 

The equations of motion are three simultaneous differential equa- 

tions with constant coefficients, the solutions of which may be obtained 

by assuming a solution in the form: 

1% , ,   k'/r 
AG^AQ^ 

(23) 

and.' 

d(*0)* AfyJe 
X'/r 2 .2    X^T 

d (*6)= A$4 e (24) 

where   X is a real or complex constant of equal value for each variation, 

and where Au  , Aor  , and AQ  , are also real or complex constants , 
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Substituting Eq. 23 and Eq. 24 into £q. 22, and dividing out 
A t/r 

the common term e , reduces Eq   22 to three algebraic equations 

in the unknown X and the terms A/i   , zw   and AQ  • 

r — 
A< +[C-+^/^ = 0     ^ 

{25 b) 

C ̂57 
L A 

yt -f- 
C /»? 

L 
Zcw^ - ^r/?2/^=(? (?,c) 

It is a property of this type of equation that there can be non-zero 

values of the Uiiknowns only when the determinant of the coefficients is 

equal to zero: 

0/ ^ 

c. 
'/*■ 

c 

<V 

&AA     /-. x =  0 
(26) 

Expanding this stability deteirninant; the characteristjc equation 

in X is of the form: 

Af*£A$*c/*i)l*£ = o (27) 
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/} •= AT/^ 

r = - cr c 

5 ^ ^ 

V 'fed»; 

(28a) 

(28b) 

(28c) 

(28d) 
9^ ^^^ i/** QsG* 

It is oonvenient at this point to consider the hovering Flying 

Platform as a special case of the former development. 

The common assumption, in hover analysis, is the exclusion of 

the vertical degree of freedom since, in hovering, the horizontal motion and 
C C tilting    do nor  affect the thrust.    The derivatives    T   and    T   are 

\l a 
are zero.    Hence, the thrust will be essentially constant and there will 

(28e) 

k:;;;: JW      - 
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be no appreciable vertical motion of the machine,    principal Interest 

is centered en changes of velocity ratio and attitude angle and not on 

altitude change.   This can be accomplished mathematically by altering 

the original equations of motion so that the thrust force equation is elim- 

inated    entirely.    The derivatives S^ and ^ are zero and the alpha 

terms m the H-Force and moment equations are dropped. 

The   algebraic equations are: 

(V Jjyc, 'C^'^y^^-o 

föj^ 
) 

AB, = 0 

and the;determinant of coefficients is: 

(29) 

M (W*^ 
C 
*** 

(0 

Expanding this determinant yields the thlni order characteris 
equation: 

= o (30) 

tic 

j/'^'fJ + D^o 
# 

(31) 

where: 

^»4 (32a) 
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L*    ->  ^o)     %  "art*) 

D ^ C    C 

(32 b) 

(32 c) 

(32d) 

The characteristic equations obtained for forward flight and 

hovering are often referred to as the stability quartic and cubic.   The 

roots of these equations are the values of  X that determine the final solu- 

tion. 

Then, for example, the response of an aircraft in pitch AG to a 

disturbance may be found by a solution of the following form: 

*,* ).% XM t/Zr 
Ad'Afye   tAQ^c    •Zköe    +Ae„e 

(33) 

Determination of time histories of the variables by actual 

solutions of this form is quite lengthy and tedious if numerous deriv- 

ative    variations are made. 

However, analo^ computers can be used to solve the equations of 

motion in order to obtain the time histories associated with arbitrary 

changes in the stability derivatives.   Typical time histories are shown 

in Figs. 5 and 6. 

■■-^•..■Ä-b.*--.-;-,-,..,,. 

} 
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Investigation of the Roots of the Characteristic Equation 

Frequently, the important aspect in the study of a dynamic system 

is the determination of the characteristic modes of motion of the aircraft 

after a disturbance from steady flight, by an investigation of the four 

roots of the stability quartlc. 

Methods of predicting the character of the motion from the roots 

or the coefficients are covered in various texts.  (Ref. 5). 

It is of interest to know whether the motion is oscillatory or 

aperiodic.   If oscillatory., it is necessary to determine the period and 

dafnping.   When aperiodic, it is important to determine the rate of 

divergence or convergence. 

This information may be obtained by examining the roots of the 

stability quartlc. 

When the roots are positive real numbers, the motion is an aperi- 

odic   divergence; negative real numbers, aperiodic convergence; and 

complex pairs, an oscillatory motion.    In the case of a complex pair of 

roots, the oscillation is undamped if the real part is positive, and damped 

if the real part is negative. 

The roots of the quartlc may be obtained by any of the numerous 

methods outlined in many texts. 

In general, if the roots are both real and complex as; 

J3 - o 

the period of the oscillatory pair may be found by; 

(34) 

ir 
[second si (35) 
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and the damping may be found as the time (T) required for tho transient 

response to grow to double amplitude or to decay or damp to half 

amplitude: 

a r- * 0.693 ^ rsfco^sj 
(36) 

Taking the center of gravity et the original location,  (,42c above 

the top of the duct) the roots of the quartic for the different ducts at 

different speeds are computed.   The damping and period are shown for 

each of the roots. See Tables I and II. 

Investigation of the Coefficients of the Characteristic Equation 

Considerable information concerning the character of the motion 

of the aircraft can be obtained from the coefficients of the stability quarUc 

without solving for the roots. 

If all the coefficients of: 

rfi *£}* CJ*+£J*£*0 (37) 

are positive, there can be no positive real root and there Is no possibility 

of a pui-e divergence.   If one of the coefficients changes sign (becomes 

negative) there cai^be either an increasing oscillation or a pure diver- 

gence in one of the modes. 

The C coefficient is of special Importance since it represents 

approximately the maneuver margin of the aircraft (Ref. 6).   If the G 

coefficient changes sign (become^ negative) it is an indication of a 

serious instability.   There will probably be a rapid divergence or unstable 

oscillation. 
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' 
The E coefficient, where: 

* 

£-C ̂  L  SA    äot BoC     tyUsj (38) 

is of importance for static stability.   The static stability is positive if E 

is greater than zero.   If E is equal to zero, one of the roots is zero and 

one of the modes can continue unchanged indefinitely.    Usually E is the 

first coefficient to change Sign, and therefore the first indicator of a 

divergence or positive real root.   In some instances, it is possible for C 

kto change sign before E, in which case there will be a dynamic instability 

occurring with a positive static stability. 

Regardless of the signs of the coefficients, it is possible to deter- 

mine the number of roots having positive real parts by using Routh's 

criterion.    This method requires only simple calculations utilizing the 

coefficients of the stability quartic in setting up the familiar Routh's 

array.   The number of roots having positive real parts is equal to the 

number of sign changes occurring in the first column of the array. 

Also, from Routh's array, it is possible to obtain the combination 

of coefficients known as Routh's discriminant: 

R = ßCD-/)Dz-ß2£ (39) 
where A, B, C, D and E are the coefficients of the quartic.   If aJl the 

coefficients are positive,    it is possible to make the followino statements 

concerning the stability of the system. 

If Routh's discriminant is positive, there is no possibility of the 

real part of any complex pair being positive. There will be no undamped 

oscillations. 
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If Routh's discriminant is negative, there is a complex pair of 

roots with a positive real part.   There is an undamped oscillation. 

If Routh's discriminant is equal to zero, there is a neutrally damped 

oscillation implying a complex pair of roots with a zero real part. 

Ihe criterion, (R = 0), then indicate? n boundary between stable 
and unstable oscillations. 

This condition,  (R = 0), developed from the coefficients of the sta- 

bility quartic, may be investigated further byassuming a solution of the 

form for neutral oscillations   (\ = iu).   Substituting this solution with the 

zero real part into the characteristic equation gives: 

J^-Am't-Cv'+ami * £ = o 

J 

Forming two equations of the real and Imaginary parts: 

/rm    — C of    T*- ^T = o 

~ ßaj2 + DOJ   = o 

and solving Eq. 41 and Eq. 42 for w2, yields: 

00*=    D 

(41) 

(42) 

(43) 

%. 
(44) 

• 

..-,,..„-,■,. 

/ 



33 

or; 

Substituting Eq. 43 in Eq. 41 results in: 

3C£)-AD2-33£ ~0-/R ' (46) 

which is the form of Routh's discriminant. 

With this analysis, one can obtain an appreciation of the require- 

ments imposed on the coefficients A, B, C, B, E, so that the solution 

R = 0 is a stabiliiy boundary between stable and unstable oscillations. 

Since a solution of the form for neutral oscillations is assumed 

(A ■ iu), inspection of Eq.-43 reveals that ^ will be a real number, e.g. , 

uj = a, if D and B are both positive,   and the solution A = ia will 

indicate   a neutral oscillation.   However, if D   or B   changes sign so 

that u = ia in Eq. 43, then the solution will be X ■ -a, or a real root. 

Therefore, when the D coefficient changes sign,  (becomes negative), 

the solution of Routh's discriminant equal to zero no longer d'jilnes an 

oscillation boundary. 

Boundaries of the Stability Quartic 

In the analog computer program,  it WJJ found that the derivatives 
C C 

m   and    m   had   a    principal effect on the mode of motion of the Flying 
/x a 

Platform. 
■ 

The.Figs.  10A,  HA, 13Aand 14A entitled "Boundaries of the 
C C Stability Quartic" are drawn with    m   and    m   as the ordinate and 

Ji a 
abscissa. 
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Included on this diagram era various boundaries of the stability 
G C 

quartic plotted as functions of    m   and    m  .   Values of the total stability 
ii a 

derivatives were used as calculated from the wind tunnel data for each 

speed and duct configuration.   The theoretical value of pitch damping 

was used and kept constant for these diagrams. 

The coefficients of the stability quartic, C, D     and E are plotted 
C C as functions of    m   and     m  and appear as the straight lines labeled 

ii a 
0=0,0=0 and E = 0.   The lines so labeled represent the boi^ndaries at 

which each coefficient changes »Ign from positive to negative for the 
C C appropriate values of    m   and    m   . 

li a 
The coefficients are negative on the hatched side of the line.   For 

example, near the origin in the right half plane the vertical line labeled 

C = 0 is negative on the right »ide of the line. 

The meaning of the traversing of these lines (coefficients changing 

sign from positive to negative) has been discussed previously and, for 

this section, can be summarized as: 

C< 0 - Serious instability associated with negative 

maneuver margin. 

D < 0 -The solution R - 0 no longer has meaning as 

an oscillation boundary. 

E:< 0 -Instability associated with a negative static 

margin.   Al/craft statically unstable.   Dynamic 

instability present in the form of a divergence 

due to static instability. 
C C The coefficients A and B, not functions of    m   and    m   a'ld 

^i a 
generally positive, do not appear on these diagrams. 

The line R ^ 0, representing Routh's discriminant, is plotted 

to denote the boundary between stable and unstable oscillations. 

■ ■     ■ « ummvmmimmmnm*mm*mmssm*-*v 
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This line represents the loci of the values of    m   and    m     for 

ß 0 
neutral oscillator/ motion. 

On the left aide of the Una % is positive and the oscillations will 

be stable .      On the right or hatched side R is negative and the oscillations 

will be unstable.    The line R = 0 does not exist paßt the line D = 0, since 

its meaning as an oscillation boundary is ended whenever the D coefficient 

becomes negative. 

In one case,  (Fig.  13 A),  the line R = 0 has essentially three 

branches, all representing a neutral oscillation boundary, and all located 

in the region where the D coefficient is positive.    In the top half plane, 

the two branches of R = 0 form a parabola Inßide of which there is an 

unstable oscillation (at least two of the roots must form a complex 

pair with a positive real part).    In the bcttom half plane, only   one 

branch of the parabola appears since the other is nonexistent when it 

crosses the D ■ 0 line into the region where the D coetficient is negative. 

Note that the line E ^ Ü passes through the middle of the R -■ 0 parabola in 

the top half plane. 
C C 

Whenever the values of    m   and    m   locate a point on the negative 
ii a 

side of the E = 0 line, at least one of the roots of the quartic must be 

positive and real, and an instability exists which takes the form of a 

divergd.vco. 

Then, in the region between the E ■ 0 line and the right hand branch 

of the R = 0 line in the first quadrant (Fig.   1 3A), at least three of the roots 

of the quartic are accounted for; a complex pair with a positive real part 

and a positive real root.   The other root in this region is a convergence 

as seen in the root It cus plot Fig.  13-1. 

The other two branches of the R = 0 line located in the second and 

third quadrants represent oscillation boundaries, so that in the region 

between them, R is greater than zero «ind the entire area represents a 

^^\^Y^^:iV':~*      ■■ 
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completely stable region of only convergences and stable oscillations. 

In Fig. 14A, the R = 0 line is terminated when it reaches the E = 0 

line since it passes into a region where    m   and E are always negative, 

so that the predominating mode of motion is a divergence that strongly 

masks all other modes of motion. 

The line labeled RLBP represents a locus of points obtained from 

root locus diagrams.   The letters RLBP are an abbreviation for "Root Locus 

Break Points".   The break point in this case represents the point in the 

right half plane of the root locus diagram where a complex pair of roots 

joins the positive real axis, thereby terminating the unstable oscillation 

and becoming two aperiodic divergences. 

In other words, moving to the right from the stable region, across the 

R = 0 line , and passing into a region of unstable oscillations, at least 

two of the roots of the quartic are a complex pair with positive real 

parts (Figs.  I0A, 11A, and 14A).   Continuing to move to the right into 

the first quadrant and crossing the RLBP line, this Complex pair becomes 

two real positive rootö, ending the unstable oscillation and now   epre- 

sentinq two divergent roots .   To the immediate right or hatched side of 

the RLBP line, at l^ast two of the roots of the quartic are positive real 

roots. 

The line RLBP does not appear in Flg. 13A, because the parabola 

R = 0 already defines a large region where unstable ofecillations start 

and stop. 
C C 

However, for extremely large values of    m   and   m   beyond the 
ß a 

values of this diagram (Fig.  ISA), there is a region where the complex 

roots become positive real roots for a time.    (See root locus Fig.  13-I-e, 
C C 

points 180 and 181.)   The value of    m   is equal to 0.006 and    m   is 

approximately equal to 0.1 at these points, which are beyond the pertinent 
C C 

rang« of    m   and    m    for this particular case. 
ß a 

r 
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The various center of gravity locations have been plotted on these 
C C 

diagrams according to their respective values of    m   and    m   as 
ß a 

listed in Table III .    The broken line between these points represents the 

approximate line of travel for the e.g. at intermediate values. 

Explanation of Stability Diagrams 

The Figs    10B,  111, 13B and i4B entitled "Stability Diagrams" 

are a greatly Simplified form of the previous boundary diagrams.   The 

only portions of the boundaries that have been retained are those which 

divide the di&grarn into the pertinent regions of stability. 

The unshaded area represents a region of complete dynamic sta- 

bility .    Only roots representing convergences and stable oscillations 

exist in this region. 

Tne shaded areas represent regions of dynamic instability.   Roots 

existing in this region represent divergences and/or unstable oscillations. 

There are always four roots to contend with in every region.   In 

the stable region all four roots must be stable roots.   In the unstable 

region, a minimum of one unstable root must always exist while the others 

may be stable. 

Actually, the unstable roots die the predominant modes of motion In 

the unstable regions and mask the stable modrs present. 

One shaded unstable region is labeled "unstable oscillations" 

and indicates that at least   two of the four roots in this region must be 

a complex pair with a positive real part.   The other shaded area indicates 

the unstable region where a minimum of one unstable root must exist. 

Some of the interesting modes of motions which prevail in the 

various regions are labeled in, these diagrams. 
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Again, the various center of gravity locations have been plotted 
C C 

according to their respective values of    m   and    m   as listed in Table 
11 a 

III.   The broken line represents the approximate line of travel of the center 

of gravity at intermediate values. 
C For the case of hovering, a   and    m   equal zero.   The diagram 

C 0 a 

is plotted only for    m   and appears in the form shown in Fig. 8. 
ß 

The study of these diagrams, together with the associated root locus 

diagrams, will present quite clearly and concisely the precise modes of 

motion to be expected at different speeds for different center of gravity 

locations with the different duct configurations. 

• 

Explanation of the Root Locus Diagrams 

The stability diagrams were prepared in order to show concisely 
C C 

and clearly the role of    m    ,    m  , vertical center of gravity travel, speed H a 
changes, and different duct designs, in affecting the modes of motion 

of the Flying Platform. 

The diagrams exhibit rather precisely the mode of motion associated 

with locations in the various regions. 

Although the determination of the stability boundaries is quite 

lengthy, they may be calculated by various methods. 

In the formulation of the stability diagrams for this Report, use 

was made of the root locus method of displaying dynamic responses. 

With this method, it is possible to exhibit the properties of a linear 

system by plotting the loci of the roots of the characteristic equation in 

which the values of selected derivatives have been varied. 

A complete treatment on the utilization of this method is avail- 

able in texts by Evans (Ref. 7) or Savant (Ref. 8). 



Since primary interest is centered on varying the derivatives     m 
C and    m   , the characteristic equation may be written in the form: 

a 

/?J   *ßj   ^(c + Cz^ + ^c^j 
3 "-^st 

(47) 

^^7-4^^^^^^^^)= 0 

where the quantities enclosed in the parenthesis are equal to the coeffi- 

cients C, D and E.   From this expression it is possible to calculate the 

poles Bnd the zeros.   Since vertical center of gravity travel seems to have 
Q 

the primary effect of changing    m    , the root locus diagrams were plotted 
C ^ 

so that    m   varied from zero to positive or negative infinity.   The poles 
^ C C 

were calculated for specific values of    m   with    m   equal to zero. 
a \L 

Solving the characteristic equation in this manner gives the four roots of 

fhe_quartic p , p , p , p.. The zeros of the equation are the increments 

of    m  , namely: 

C3  '/*•   "*(>«) 

4 = cc (48) 

Solving the above, the zercs for    m   are obtained snd denoted by z, 
C Similarly, the zeros for    m   denoted by Z, may be obtained from: 

a 

C = 
7, 

_/*, 

D
Z 

— *— 7-.       v- ^ 

/ 

v_ -A a 
VA yc (49) 
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Using the former expressions, the root locus equation may be writ- 
C C ten for a specific value of    m   with    m   varying from zero to positive 

a p. 
or negative infinity as; 

where the p's represent the poles and the z's the zeros of    m  . 
C M     C For the case where the poles (?) are calculated for    m    =    m 

C M or 
and the zeros (Z) for    m   are utilized, the expression takes the form: a 

" 0, 

c c 
in which    m   varies from positive to negative Infinity while    m   equals 

zero. 

A group of root locus diagrams are plotted so that essentially all 
C C values of    m   and    m   are covered for a particular duct at a selected H a 

speed. 

Associated with each stability diagram there are five root locus 

sets.   The first set investigates the modes of motion encountered when 

moving along the ordinate or abscissa of the stability diagram.   The 

other four sets, labeled I, II, III and IV, investigate the modes of motion 

present in the four quadrants of the stability diagram.   The value of 

m    (Eq. 50) in these diagrams varies from zero to positive or negative 

infinity. 

The root locus sets are plotted for both ducts at //equal to 0.05 

and 0.10. 

)mimililtm^immmmmmmm»mmrmimmmmmmimki.:- r^!^-^-.*^*  '> 
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■. 

Included in each figure used to investigate the modes of motion in 

each quadrant (I,_II, 111,1V) , one root locus is plotted with the zeros of 
C C 

m    instead of    m   .    This plot is divided from the rest by a double linp 
a ß 

border as in Fig.  10-I-f.     In each of these particular double border 
C C 

diagrams,     m    is equal to zero and    tn   varies from zero to infinity.    This 
jj. a 

then &hoW6 the movement of the initial positionä of the poles for each quad- 
Q 

rant as the value of    m   is increased from zero to infinity.    In this way it 
<* c 

is possible to sketch the root loci for all higher values of    m   beyond 
a        C those calculated for each quadrant.   In this respect, the values of    m 

a 
in each quadrant are usually large enough so that the basic appearance 

of the root loci will not change for values beyond the highest shown in 

each set. 

All root loci drawn in this report were accurately calculated and 

plotted to the scale ahnwn in each figure. 

The root locus se. for /i = 0 is also plotted in Fig. 7.   For both 
Q 

ducts in the hovering caFe    m   equals zero;   The stability cubics are 
a 

written as: 

^3+^JZ+C^^ = 0 
(31) 

or: 

4'f''^'+(c*r^Q^¥"/* = o 
(52) 

The root locus equation, after dropping a negligible "zero" due to 
Q 

the small value of    H. /An\'  isJ 

(4r}a)a-^$-/M) * c. (?*) = o 
-yc (53) 

,.--„. ■■-'^■^ammsfn^m ■>,■»•...-■»•,'•■:   ...--.'•■   ■    ,..-,.-; v.   i,,■..,,,„. vj.:   ,,r_  .^  „..^.w ,>»,■'•.,  :i;..-,.  ' i'Ji 
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where Cw is known and     m    is varied from zero to positive or negative 

Q 
Infinity.    The poles are calculated for    m    equal to zero.   The diagrams 

ß 
for the hovering case have three poles and no zeros. 

The root locus method may also be utilized conveniently for the 

Investigation of the effects of artificial stabilization on the transient re- - 

spönseof the Flying Platform.   Artificial stabilization may be provided 

by a rate sensitive device such as the gyro-bar with aerodynamic or 

mechanical damping. 

The addition of thifl type of device to the dynamic system may be 

accomplished rnathsmaticaliy by ir eluding a rate sensitive transfer function 

with a phase lag of the type j~7~ c0 the Pitc/. damping term in the 

moment equation. 

For hovering, the determinant of coefficients in algebraic form 

becomes:    . 

£L / ^) V (C   ) 

\ 

= o 
(54) 

Expanding this determinant: 

O-ArJ+fafL l     T    'S 

-^-r^^y£H]™ 
and arranging the poles and zeros as: 

0 = O^J[M ^y^J -^ WS 
/   (56) 

.# 

I 
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where T is the time constant for the phase iag  , the root locus equation for 

the hovering case may be written as: 

4- (H^hY^st^)+*&&+ fy)*o (57) 

where the gain of the feedback loop, K, of the stabilizing device varies 

from zero to Infinity. 

The determinant of coefficients for the addition of artificial stabili- 

zation in forward flight is: 

>^ 
a 

'*oC 

C 
9* ^^' -A A 

c *r 

z=,0 

(58) 

and expanding the determinant: 

o^j^sy+a +m+£+ ^^^"^^i4^r59) 

where the first five terms represent the original raaracterlstic equation 

and T is again the time constant for the phase lag. Separating the poles 

and zeros in root locus form gives: 

/tJr^y^-J-sWfcM + *M(l-}.)U-&)-o (60) 

: i^mmmmmmm* ■■'.■■■   ■.!.:  ■'   ■   ■ >m^^mmmiiii^^^^>0i^^:.- 
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where K, the gain, varies from zero to infinity. 

The root locus diagrams for the artificially stabilized machine in 

hovering and high forward speed are plotted in Figs, 9,  12 and 15. 

These diagrams , together with all other pertinent root locus 

diagrams, are fully explained in the DISCUSSION. 

Effect of Vertical Center of Gravity Movement op the Overall Stability 

Derivatives 

The overall stability derivatives are expressed by £q. 21 as: 

C */m ^^C   -A£ «r       ""W        *      'eC # "u 
(21fj 

*z (21e) 

■HT 

The distances x,^, ZTT and z    represent the moment arms from 

the total center of gravity to the respective forces.       m   and    m 
|l a      ^ 

lepresent the stability derivatives about the quarter chord, whereas,     m 
C ^ and    m   are functions of the distances x.,, z„ and z^,   When the total 

a T      K D 
center of gravity of the aircraft 16 moved vertically these distances will 

vary 3o that considerable changes in the overall value of the derivatives, 

especially    m  , can be obtainad. 

In the original e.g. location, the total center of gravity is 0.42 

of the chord length (0.42c) above the top edge of the duct.   For the case 

of the long chord duct, the total center of gravity of the aircraft is located 

approximately nine inches above the top edge of the duct.   Similarly, the 

center of gravity of the short chord duct is also assumed to be at the 0.42c 

location so that it is approximately five Inches above the top of the duct. 

These positions are designated as the original center of gravity positions 

from which the vertical variations of e.g. are measured.   The pilot's 

^i^Sag^tmmitijmmmmm 
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sta id-on platform always remain:! at this original position,  i.e. ,  0.42c 

above the top of the long and chort chord duct. 

The actual scale profiles of the long and short chord duct models 

are shown in Fig. 2. 
C C The values of the stability derivatives    m   and    m    for the different 

/i a 
center of gravity locations shown in Fig.  16 are presented in Table III. 

i 
■ 

k 
Pilot's 
'Platform 

e.g. 0.5 ft, 
down from 
original 

original 
location 
of e.g. 

e.g.   0.5 ft. up 
from original 
location 

e.g.  1. 0 ft. up 
from original 
location 

Fig.  16   CENTER OF C      /ITY LOCATIONS 

e 

.,,■.,-; 
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DZSCUSSION 

General 

1. Slm.Uarlty of Stability Derivatives 

From the information contained in Table III, concerning the over- 

all value of the stability derivatives, it is apparent that there is some sim- 

ilarity or overlapping of values for the two ducts for different speeds at 

different e.g. locations .   For example, the values of    m     for the long 

chord duct at ^iequal to 0.05 with the e.g. raised 0.5 feet is equal to 
Q 

0.0136 while    m   for the short chord duct at /i equal to 0.05 with the e.g. 

at the original location is approximately the same or equal to 0.0121. 

A small adjustment in e.g. location of one duct configuration would make the 

derivative equal that of the other configuration.   Similarly, the value of 

m   equal co 0.0032 also matches up for both ducts when a equals 0.10 
Q 

at the highest e.g. location. 

Therefore, at a specific speed in a certain speed range, similar 

values of either stability derivative may be obtained for both duct con- 

figurations by adjusting the vertical center of gravity location. 

2.   Attitude Angle for Steady Forward Flight 

As seen in Fig.  18, the attitude angle for steady-state equilibrium 

in forward flight is plotted versus /x.    For convenience, Fig.  17 is plotted 

directly above Fig. 18 so that conversions may oe easily accomplished 

between /i and V in feet ppr second or miles per hour. 

From Fig. 18, it is evident that the long chord duct requires larger 

tilt angles than the short chord duet.   This can be explained by the fact that 

the parasite and momentum drag of the long chord vehicle is probably 

greater than that of the short chord duct. 

For a long chord duct, the flow tends to align itself more axially 

than for a shorter length duct, and thecefore, the momentum drag is greater. 

In order to overcome the larger total drag, the thrust vector of the 

vehicle must be tilted sufficiently so that the component of thrust in the 

i 

-   .     * .      ■    .   .,:■, ■■  ■..    ■...■,.■.■.    .■    .. ■'■.: ...■:   ...   ...■■:.;■„■ 
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hortzontai direction exactly cancels the total drag In steady-state flight. 

Although the short chord dust yields the more desirable smaller tilt angles 

other characteristics such as the performance of the long chord duct 

would also be considered in any design (Ref. 2). 

Static. Stability 

1. The E Coefficient 

As mentioned previously in the DEVELOPMENT, the fundamental 

mathematical condition for static stability is that the E coefficient (the 

term independent of X in the stability quartic) be positive. 

The E coefficient: 

"JO, s* "oS (38) 

is a function of the two static stability partial derivatives    m   and 
C ^ 

m 
a 

C 
The term    m    is referred to as the static velocity stability and 

C ^ m   the static angle of attack stability. 
Q 

An aircraft is statically stable with velocity,if, when acted upon by 

a pure velocity disturbance.  It creates a moment about the center of gravity 

tending to restore the aircraft to the initial velocity.   Similarly, an air- 

craft is statically stable with angle of attack, if, when acted upon by a 

pure angle of attack disturbance, it creates a moment about the center of 

gravity tending to restore the aircraft to the initial angl« of attack.   The 
Q 

criterion for static velocity stability requires that    ro   be greater than zero 
C ^ while static angle of attack stability requires that    m   be less than zero. 

a 

PS «mmes *«öfe-s,-*ia^t»i^ww.^%w^«s:^--i; ■• 
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Generally    the Flying PlaU'orm has too much velocity stability in 

hovering and forward flight..   However   the velocity stability does 

decrease as flight speed increases and, depending on e.g. location, may 

even become unstable by changing sign. 
Q 

Wi h respect to the angle of attack stability, in hovering    m 
a 

is equal to zero and the Flying Platform is neutrally stable with angle of 
C C 

attack.    In forward flight,     m   has the wrong sign, that, is,     m   increases 
a a 

positively as flight speed increases so that the platform is statically unstable 

with angle of attack.   Neither of these criteria, taken by itself, is 

adequate to predict the static stability of the Flying Platform, The commonly 

used static stability criterion of    m   < 0 for airplanes,  is not sufficient for 
C a 

this case since it assumes    m    is equal to zero. 

For an aircraft operating in a flight regime or configuration where 
Q 

m    is not equal to zero ; the general criterion for static stability must 
C C include the effects of both    m   and    m   as exemplified by the E coefficient. 

II a 
Static instability results in a dynamic divergence whenever this coefficient 

becomes negative. ■ In the speed regime considered for this Flying Platform, 
C C 

all the terms in the E coefficient are always positive except    m   and    T  . 
C it. ß 

For the long chord duct, the term    m    is generally positive and large, 

but can be reduced and even made negative in certain forward flight speeds 

by raising the center of gravity.   The term    T   becomes negative rather quickly 
c ^   c   c and since    m    is always positive   the quantity -   T     m    is usually a 

a fi     a 
positive increment to the E coefficient.   From this it is evident that the E 

coefficient of the long chord duct, in the region of speeds considered, will 

probably_not change sign unless the center of gravity is raised sufficiently 
Q 

so that    m    can become a negative value. 
M 

F   i 
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Also, it Is interesting to note tor this case that the larger the posl- 
c c    c 

tive (unstable) value of    m    the laraer the value of tne quantity   -   T     m   . 

This becomes a larger positive Increment to the E coefficient and therefore 

enhances the static stability.   However, large positive   m   has a simul- 
a 

taneous adverse effect on the other coefficients of the stability quartic. 
C 

For example, for large    m   , positive static stability may exist while in 
a 

all probablility the C coefficient will have already changed sign, indicating 

a serious instability.   See Table I. 
C 

For the short chord duct, the values of   m   are considerably 

smaller and become negative more quickly than the long chord duct as 
Q 

forward flight speed ia increased.    Also,     T   remains positive for the 

speeds considered.   The first term in the E coefficient becomes a negative 

increment as soon as    m   becomes negative.   The second term is always 
C 

positive so that E changes sign as_sopn as the value of    m   has reduced 
c    c       c    c ^        c 

to a small positive number where    T      m   >    m      T  .    Whenever    m 

becomes negative, E has already become negative for this case. 

Although it is desirable to have a positive static stability, insta- 

bilities due to E changing sign are associated with velocity cnanges and 

are probably not as serious as the instabilities associated with angle of 

attack changes which are indicated by other coefficients of the stability 

quartiC changing sign. 

2. The Moment to Trim Versus Velocity Diagram 

The static-trim curve, in which the moment produced by the 

machine in trim equilibrium is plotted versus forward speed,  can also 

be used to investigate the static stability of the Flying Platform. 

In Fig. 19, the M-V curves are plotted for both ducts for the 

various center of gravity locations by using the moment equation: 

(4o) 
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where T • x   is the control input of the pilot, and the moment produced 

by the vehicle including the drag of the pilot is; 

■   ■ 

"'V^H-t^D-^ (61) 

Inspection of the curves of this moment plotted versus velocity 

indicates that the value of the moment required to trimxan be reduced 

by raising the center of gravity position. 

The static stability, or slope of the M-V trim curve, is the total 

derivative     -^TTT      •   In all cases presented, the slope starts as positive, 

reaches a zero value, and then becomes negative.   The criterion for 

static stability is   yU     > 0. 
OL r 

Also plotted on the M-V diagram is the horizontal line drawn 

at 200 foot-pounds representing the approximate maximum control moment 

attainable by the pilot for trim.   Presuming that a typical 200-pound pilot, 

with his e.g. located at 3r feet, can lean forward 20 degrees relative to 

the platform, the maximum control moment he can apply would be approxi- 

mately: 

/in      ** (2 00)(3. 3 3)(5t* £o ') 
WAX. 

Mp        -  200    ft.-llrs. 
(62) 

By convention, the distance x   is taken as minus when the e.g. 

is moved forward in forward flight.   The scale for X-, plotted opposite M„ 

then, in effect, represents control position for trim. 

In forward flight, the maximum forward displacement x   is equal 

to approximately -0.36 feet for 200 foot-pounds.   The intersections of 

the curves and the horizontal line,  (denoted by circles), represent the 
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maximum forward speed for which the pilot is able to trim the moment 

produced by the Platform, 

The short vertical dashes on each curve represent the points where 

^ 

Af equals zero and beyond which J&L becomes negative.   These 

polntfl are exactly the sppeds at which the E coefficient changes sign and 

becomes negative.   Actually the speeds beyond the vertical dash location 

(%ry- - O ) ;    represent flight in a speed regime where the Platform is 

statically unstable. 

For a statically stable aircraft, the control position for trim always 

moves forward (pilot must be positioned further forward to trim the Platform) 

as higher trim flight speeds are achieved. 

Notice on the diagram that the control positionier trim , starts 

to reduce beyond these vertical dash points.   In this region, the control 

position x_, for trim (pilot position) is located at successively smaller 

negative values for greater trim speeds after having recched the maximum 

negative value at    BuLl     equal to zero.   This should not be thought of 

as a region of so called "control reversal", in the normal sense of the 

words, even though the control moves aft to trim each successively higher 

flight speed.   Usually the term "control reversal" implies quite a different 

meaning with different effects and is most frequently associated with the 

reversed control effectiveness due to aeroelastic phenomena., when the 

control derivative, ^pmr    , changes sign (6    is the control deflection) 

With this meaning, for example, whenever a pilot attempts to pull the nose 

of an airplane up in order to reduce speed, (control moved aft), the aircraft 

actually noses down and tends to gain speed.   Fortunately, this is not what 

occurs for the Flying Platform if it is operated in a statically unstable 

configuration, or, for that matter, •■o any airplane which happens to be 

operating in a statically unstable contis,'-.ration.   In order to go faster or 

■    ■.  ■ ■.   ■ 
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move the nose down, it Is still initially necessary to move the control 

forward (lean forArard) to obtain the desired increase in speed.   What is 

different is that once the desired higher speed is achieved, and the vehi- 

cle is again In trim, the pilot will find the control positioned forward less 

than it was for the slower trim position (pilot leaning forward less than 

previous trim position^.   In order to accelerate an aircraft in a given 

direction, the control will always be initially moved in the same sense 

regardless of whether the aircraft is statically stable or unstable. 

To slow down, the pilot initially leans back, but when the aircraft 

is again trimmed at the desired slower flight speed. In the region where 

feS—   is negative, he will find he is leaning further forward than before. 

As seen by the curves in the M-V diagram, raising the e.g. does 

reduce the control moment required for trim but, unfortunately, also moves 

this point ( E =    jf x/"-   ' 0) t0 successively lower forward speeds, thereby 

reducing the statically stable flight envelope. 

The asterisks on the diagram indicate the maximum points where 

*jf(      is equal to zero, for each duct, commensurate with the 200 

foot-pound control moment.   The difference between the two radically 

different duct designs appears to be on the order of only six feet per 
second: 

Short Chord Duct    V 
max «   38 feet per second 

Long Chord Duct     V "■  32 feet per second max 

Other flying qualities of a machine similar In nature to the 
subject vehicle are discussed In Ref. 3. 
Dynamic Stability 

The fundamental requirement for stable dynamic response is that 

all the coefficients of the stability quartic and Routh's discriminant be 
positive. 

* 

!^;^';i;■W;■■ .:   ■ . . 
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If all the coefficients are initially positive, the first indication of 

an instaollity will normally be a divergence when E changes sign, or an 

unstable oscillation when Routh's discriminant becomes negative. 

The roots of the characteristic equations evaluated for the original 

e.g. location of each duct at ^i equal to 0. 05 and 0.10 are shown in Tables 

I and II. 

It should be remembered that the following analysis investigates 

the control-fixed or open-loop response of the Flying Platform configurations 

The open-loop response is the resulting mode of motion of the 

Flying Platform when the pilot remains rigid and applies no control inputs 

throughout the transient response.   The :losed-loop response Is the 

resulting mode of motion of the Platfor.n when the pilot acts as a feedback 

by providing controlling inputs to the transient response.   Although the 

Flying Platform is unstable in the open-loop it will be stable closed- 

loop if the pilot can correctly control the machine as he desires. 

The open-loop response of the Flying Platform is investigated to 

determine the effects on the dynamic stability of vertical center of gravity 

location, duct design changes and artificial stabilization. 

In this Report this may be thoroughly accomplished by referring 

to the various figures of the stability diagrams, boundaries of the quartic 

and the associated root locus plots. 

On the figures labeled "Boundaries of the Stability Quartic" and 
C C "Stability Diagram", the symbols represent the values of    m   and    m 

M a- 
for each parMcular center of gravity location.   The dashed line connecting 

these circles represents the movement of these points on the diagra n, 

as the center of gravity location is varied. 



54 

For the different cases: 

1.   Long and Short Chord Duct     Hovering     ^ = V = 0 

The dynamic analysis of the hovering case of the subject Flying 

Platform can best be obtained by referring to the root locus diagram Fig.  7 
a and b. 

* 

The case is somewhat simplified by the fact that we deal with a 
cubic equation and    m   is equal to zero. 

For the hovering long chord duct (Fig. 7b), when m is equal to 

zero, the three poles represent two convergences (point 80 and point SJl) 

and a zero root (point 82).'  As the gain of    m   is increased positively, 

the pole   at point 80 moves toward point 86 and continues as a convergence 
C for all values of positive    m  . 

C ** 
Also, as    m   is increased positively, the two poles at point 81 

and point 82 move toward each other en the negative real axis until they 

become equal roots at the break point t>oint 83).   Further increases in    m 

cause the equal roots to break away from the negative real axis and become 

a complex pair, indicating a stable oscillation of increasing frequency 

and decreasing stability.   At point 84,     m   has increased to the value at 

which the oscillation becomes neutrally damped.   Increasing    m   further 

makes   the oscillation unstable (point 85).   The oscillation continues to 
C 

increase in instability and frequency as    m   is varied to positive infinity. 

The short chord duct in hovering (Fig. 7a) has a similar analysis 

and is numbered accordingly, the only difference being the respective 
gains for the particular modes ot motion. 

In order to complete the set of stability diagrams, Fig. 8 is 

presented showing the various gains of    m   for the different center of 

gravity locations together with the various modes of motion.   This 

diagram is considerably different from the other stability diagrams since 
only the values of     m   need to be shown. 

4t     ^    ^u       . 

J 
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For the Jong chord duct,     m   changes approximately 0.0028 per 
^ C 

Inch of e.g. movement.   Stable oscillations start when    m    is equal to 
C 

0,0003. which is the value of    m   at the root locus break point (point 83). 
p C 

Unstable oscillations start when m   is equal to 0.0056, which is the 
C ^ 

value of    m   at point B4 on the root locus diagram.   All the center of 
M 

gravity locations are well inside the unstable region. 
Q 

For the short chord duct,     m   changes approximately 0.001 per 
C inch of e.g. movement    Stable oscillations start when    m    is equal to 

C P 
0.000C75, which is the value of    m   at the root locus break point (point 93) 

C ^ Unstable osoiliations start when    m   is equal to 0.0024, the value of 
C ^ 

m   at point 94 on the root locus diagram.   Again, all the c g. locations 

are well inside the unstable region. 

For the specific case of the long chord duct in hovering, the roots 

of the characteristic equation (Table I) for the e.g. in the original location 

indicate a convergent mode and an unstable oscillation.   The p ;riod of 

this oscillation is approximately four seconds with a time to double 

amplitude of about one second. 

For the short chord duct in hovering, the roots of the characteristic 

equation (Table II) for the e.g. in the original location indicate a convt.-r- 

gent mode and an unstable oscillation.   The period of this oscillation is 

approximately six seconds with a time to double amplitude of 2.23 seconds. 

Both ducts are rather unstable with regard to the open-loop response, 

however, the short chord duct is noticeably the better of the two. 

As mentioned in the DEVELOPMENT, it is interesting to investigate 

the effects of artificial stabilization on the transient response of these 

vehicles. 

The effect of such devices on the behavior of the system is shown 

by root locus plots for several different cases. 

w» wmmmim 
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2 .   Long and Short Chord Duct     ArtificiaJ Stabilization Added 

Hovering /i = 0 

For the short chord duct (e.g. in the original location) when K 

varies from zero to positive infinity reference is made to Fig. 9a. 

The artificial stabilization adds two zeros to the hovering root locus 

diagram, one at the origin and the other close by in the left, half plane. 

Arbitrarily selecting T equal to 3.333, an additional pole is located at -0.3. 

When K is equal to zero, the poles located at point 100 indicate an 

unstable, lightly damped oscillation, while the poles at point 101 and point 

102 represent two convergences,,   As K is increased, the poles (points 101 and 

102) come together on the real axis at the break poini 103 and then break 

away from the real ixis to become a stable oscillation of increasing 

frequency.   Meanwhile the unstable oscillation becomes stable with no 

appreciable change in frequency (point 104).   However, when K is increased 

further, the oscillation remains stable but decreases in frequency (point 105) 

until the complex pair become real roots which have limiting values at the 

zeros on the real axis (point 106). 

If we make T larger, for example equal to 50, so that the pole is 

located between the zeros on the real axis, the root locus appears as in 

Fig. 9b. 

When K is equal to zero, the poles (point 112 and point 109) rep- 

resent convergences and the complex pair (point .110) an unstable oscillation. 

As K is increased, the poles representing the convergences (point 112 and 

point 109) move toward and terminate at the zeros {point 108 and point 107). 

The pole at point 109 becomes a zero root when K reaches Infinity, whereas 

the other pole (112) always represents a convergence. 

The unstable oscillation (point 110) increases in frequency and 

becomes neutrally stable at point 111.   As K is increased, the oscillation 
■ 

remains stable but the frequency continues to indrease. 

As suspected, depending on the value of the time lag, the addition 

of a lagged rate feedback device is able to stabilize the hovering platform 

to various degrees, 

y* 
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Kd 
Is selected equal to zero (T ■ For pure rate feedback, when T in 

!     f 1 + Td 
- = -    =0), the extra pole is located at negative infinity (a ■ -co). 

As K is increased positively, the poles representing the unstabie oscillation 

(point 100) move directly to the break point 106 in the left half plane instead 

of looping around (points 104 and 105) as in Fig. 9a.   For this case the pole 

representing the convergence at point 102 stays in the left half plane and 

moves to the left as K is increased. 

For pure attitude feedback, when T is selected as infinitely large 

(T = - = r = oo), the extra pole (point 109) is located at the origin (a * 0) 
a     U 

and cancels the zero (point 107) located there.   The root locus for this case 

appears very similar to Fig. 9b. 

Thus, the hovering Flying Platform may also be stabilized by either pure 

rate or attitude feedback or a combination of both. 

The analysis of adding artificial stabilization to the hovering long 

chord duct is qualitatively the same as that of the short chord duct. 

3. Long Chord Duct      /i^ 0.05 V = 16 mph. 

Referring to the boundaries of the quartic (Fig. iOA); it is seen 
Q 

that center of gravity movement has a primary effect on the value of    m 

but only changes    m    slightly.   Actually, on this diagram, each inch 
C 

of e.g. movement accounts for approximately 0.0031 change in    m    and 
C M 

0.000014 change in    m   .   It is evident that all e.g. locations are 
a 

on the right side of the C = 0 line and therefore the C coefficient is always 

negative.   If the eg, is raised more than six inches above the original 

position, the D   coefficient changes sign (point 1), and if raised by 12 

inches (point 2), the E coefficient changes sign. 

Referring to the stability diagram (Fig.  10B); it is noted that most 

of the e.g. locations fall within the region of unstable oscillations.    If 

the e.g. is raised about nine inches (point 3) the unstable oscillations 

cease and divergences occur.   Continuing to raise the e.g.   (point 4) causes 

E to change sign so that even the static stability is now negative. 
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A better appreciation of the modes of motion can be obtained from 
C the associated root locus plots.   Note that the value of    m   on the 

a 
stability diagram is approximately equal to 0.002 and corresponds approxi- 

mately   to the value investigated in Fig. 10-I-c. 

When    m   is equal to zero, the poles are located at point 5 and 

indicate the presence of two convergent and two divergent modes.   The 

value or gain of    m    Increases from zero, at the poles, to infinity along 
^ C the direction of the arrows.   As    m   is Increased to the value at point 3 

M 
(the break point on the root locus and corresponding to point 3 in Fig. 10B), 

an unstable oscillation starts while the two other roots move along the 

arrows and remain converaent modes.   Continuing to increase the gain of 
C 

m   to larger positive values along point 6, the oscillation increases 

in frequency and instability.    The two other poles remain convergences 
Q 

regardless of the positive gain of    m  . 
^ C The portion of the e.g. travel at which    m    is negative may be 

^ C investigated by referring to Fig,  10-IV-c.   Again at zero    m    , there are 

the aperiodic modes, two convergences and two divergences (point 5).   As 
C 

the gain of    m   is increased negatively, it is seen that a stable oscillation 

starts (point 8) and one divergent mode becomes convergent.   However, 

the predominating mode is the ever-increasing divergence (point 7), as 
c c 

m   is increased negatively so that the overall mode of motion for    m 

increasing negatively is an ever-Increasing divergence. 

The open-loop response in this case is a serious instability.   If 

the roots calculated for the case with the original e.g. location are 

considered (Table I), it is seen that at /x = . 05 and V = 16 mph, there is 

an unstable oscillation with a period of 8.57 seconds and  a time to 

double amplitude of only a little over two seconds.   In other words, the 

oscillation would double amplitude in about one-quarter of the cycle. 
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4. Long Chord Duct ^ -- 0.10   V ^ 34 mph 

Referring to the boundaries of the quartic (Fig. l|Aj; it is seen 
Q 

that    m   changes approximately 0.0043 per inch of e.g. movement while 
C m   changes 0.00014 per inch. a 

Starting with the center of gravity lowered six inches from the ori- 

ginal location, it is noted that the eg. is on the positive side (point 11) 

of the C = 0 line.   As the e.g. is raised toward the original location, the 
C C C coefficient changes sign (point 12) ai:d    m   decreases while    m 

/i a 
increases.   Continuing to raise the e.g. further, the T) coefficient changes 

sign (point 13).   When the center of gravity is raised six inches (point 14), 
Q 

the line RLBP has been crossed and    m   is neoative.   If the e.g. is raised a 

few more inches (point 15) the E coefficient changes sign. 

Referring to the stability diagram (Fig,  llß^the points again 

are located principally in the region of unstable oscillations.   The unstable 

oscillations cease if the e.g. is raised approximately six inches to point 

14 at which location the RLBP line has been crossed and the dynamic 

instability takes the form of a divergence.    If the e.g. is raised a few 
c 

more inches,     m   continues to Increase negatively and at point 15, E 

changes sign^so that now the configuration is even statically unstable. 

For a closer look at the characteristic modes of motion reference 

is again made to the appropriate root locus plots.   From the stability 
Q 

diagram  note that       m    ranges in value from approximately 0.001 to 0.004. 
a 

The root locus plots for both these values are sho'vn In Figs. ll-I-d 

and 11-I-e. 

Fig.  ll-I-d represents the locus when moving vertically up the 
c C line    m   equal to G.öOl   m the stability diagram (Fig. HE) when    m a ß 

varies from zero to positive Infinity.   The Initial position of the poles, 
C G when    m   equals 0.001 and    m   equals zero, indicates that two con- 

vergenees (point 16) and an unstable oscillation (point 17) exist.   As 

J 



60 

a 
the gain of     m   is increased,   (equivalent to moving upward aionn 
C ^ m   equal to 0.0Ü1 in the stability diagram) by moving in the direction 

a 
of the arrows in the root locus diagram, two poles always remain con- 

vergences, one with ever increasing value (point 18) and the other 

with decreasing value  and a limit at the zero (point .19).    The other two 

poles (point 17) continue as unstable oscillations with ever-increasing 
C 

frequency aqd instability (point 20) as    m   is increased. 
C ^ For    m   equal to 0.004 (Fig. 11-I-e), the picture is much the same, 

a   A 
except that for        m   equal to zero, the four poles represent two conver- 

M Q 
gences (point 21) and two divergences (point 22).   As the gain of    m 

is increased the convergences behave as before.   However, the two poles 

representing the divergences (point 22) move toward each other and become 

equal roots at point 23, the root locus break point.   This point (point 23) 

is also shown on the stability diagram.   As the gain of    m    is increased 

further, the two roots split as shown (point 24) and become unstable 

oscillations of increasing frequency and instability. 

In order to cover the remaining center of gravity locations,  (point 
C 

14 and point 15 in Fig.  ilB), the root locus plots for    m   equal to the same 
C * a 

values, but    m    varying from zero to negative infinity, are analyzed 

(Fig.  U-IV-d and Fig.  11-IV-e). 
Q 

In Fig.  11-IV-d, the four poles at    m    equal to zero represent 

two convergences (point 25) and an unstable oscillation (point 26).   As 
Q 

the gain of    m    is increased negatively, the two convergent modes 

(point 25) move toward each other in the left half plane to the break point 
Q 

(point 27).   As     m   is increased more negatively, they break away from the 

real axis and become a complex pair representing a stable oscillation 

of increasing frequency and decreasing damping ratio.   In the meantime, 

I 

as     m      is being increased from zero to negative infinity, the unstable 

.^■>^ t-..;^v.-,.^-*a-feH  ■■■■■■ -  ' '= .*.,-. ^» j   . 

i 
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oscillation (point 26) is reducing frequency to the point where the complex 

.pair of roots (point 26) become divergences, or equal real roots by joining 

on the real axis,   (point 28).    One divergent pole formerly at point 28 

moves across the origin and becomes a convergence with a limiting value 

at the zero (point 29) in the left half plane.   The other divergent pole, 

formerly at point 28,moves to the right,   continuing as a divergence of 

ever-increasing instability (point 30). 
C For    m    equal to 0.Ü04 (Fig.  U-IV-e), the poles behave in much the 

a 
same fashion with the exception that the unstable oscillation at point 26 

becomes two unequal, positive, real roots, representing divergences when 
C 'm   equals zero.   These poles move in much the same way as the posi- 

^ C tive real roots (point 28) move as    m    increases negatively.    Note that in 

both cases there is always an instability present, either in the form of 
Q 

a divergence or an unstable oscillation for the range of    m    from zero 

to negative infinity. 

Again, the open-loop response for this case is a serious insta- 

bility.   Considering the roots calculated for the case of tne original e.g. 

location (Table III), for /i = 0.10 and V " 34 mph, two convergences and 

an unstable oscillation exist.   The predominating mode of motion for this 

case is the unstable oscillation with a ten second period and a two second 

time to doubie amplitude.   Therefore, the aircraft doubles amplitude in 

approximately 1/5 of a cycle. 

5„   Long Chord Duct   Artificial Stabilization A^ded   p. = 0. 10 V^ 34mph 

Arbitrarily choosing to investigate the effects of artificial stabi- 

lization on the dynamic stability associated with the vertical center of 

gravity located at the original location, an instability exists in the form 

of an unstable oscillation (Fig.  12, points 140 and 15 0).   Taking the case 

of pure attitude feedback (Fig.   l.2a); one pole cancels with a zero at the 

11      I 
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origin (T equals infinity), the remaining poles represent two convergences 

(point 141 and point 142) and the unstable oscillation (point 140).   As K 

is increased, the unstable oscillation (point 14 0) becomes neutral (point 

146) and finally stable, with the oscillation reaching a limiting value at 

the zeros (point 143).   The two poles at point 141 and point 142 Join at 

point 144 and break away from the negative real axis to become a stable 

oscillation of increasing frequency (point 145) as K is Increased, 

For the case of pure rate feedback (Fig. 12b), a.zero is located at 

the origin (T equals zero), and the other poles and zeros are located in 

the same position as in Fig. 12a.     The unstable oscillation (point 150) 

and the two convergent poles (points 151 and 152) still exist as before. 

However, as the gain K is increased, the poles of the unstable 

oscillation (point 150) move into the left half plane (point 156) and be- 

come a stable oscillation with a limiting value at the zeros (point 154). 

Notice that they move in a more direct line contrasted to the former case 

where the loci loop around (point 146) when moving toward the zero (143). 

To investigate Intermediate values of T (pure rate feedback with 

various degrees of lag), refer to Fig.  12a.   Locating a zero at the origin 

with a pole very close to it but in the left half plane, the loci are 

essentially unchanged.   As this pole moves to the left or away from origin 

(T decreasing), the loci between point 140 and point 143 tend to describe 

paths that become more and more direct until they appear exactly like 

the loci between point 150 and 154 when the moving pole reaches negative 

infinity. The other loci for point 141 and 142 remain similar except that 

the break point (point 144) continues to move to the left as the moving 

pole passes the position point 142.   The pole at point 142, in this case, 

always moves to the right and terminates at the zero located at the origin. 

From this analysis, it is evident that a pure rate feedback with 

various degrees of lag can be used to stabilize the system and exert some 

control on the frequency and damping ratio of this particular configuration. 

HiiMH'''At..., 
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6.   Short Chord Duct     /i - 0.05 V ^ 18 mph 
C Referring to the boundaries of the quartic    (Fig.  I3A);      m 

r* 
changes approximately 0,002 per inch of vertical eg. movement while 
Q 

m   changes very slightly, say 0.00001 per inch movement.   All center 
ct - 

C of gravity locations have positive    m   and are located to the left (positive 
a 

side) of the C - 0 line so that the C coefficient in the stability quartic 

is always positive for this case.   However, if the e.g. is raised almost 

six Inches above the original location (point 34), the E coefficient changes 

sign so that a dynamic instability appears in the form of a divergence, 

due to the static instability.    Raising the e.g.   slightly further      (point 

35),     m    becomes negative and an additional increment of upward travel 

causes the D coefficient to change sign as well (point 35). 

Referring to the stability diagram (Fig.  13B); the center of gravity 

located six inches below the original location lies in a region of unstable 

oscillations (point 31).   As the center of gravity is raised past the original 
C e.g. location (point 32) (   m   decreasing) it crosses the line R - 0 (point 

33), thereby ending the unstable oöcilIation,and passes    through a small 

portion of the stable region before crossing the E - 0 line (point 34) 
C 

into the divergent region.   If the e.g. is raised further,     m    changes 

sign (point 35). 
i 

To determine the characteristic modes of motion for this case, 

reference is again made to the appropriate root locus plot.   From the stability 

diagram,     m    is in the range of approximately 0.0002.    The closest 
c value in the root locus plots is     m   equal to 0.0005.   Analyzing the 

a 
plot (Fig.  13-I-b), which closely resembles the character of the 

motion for the exact value of    m   , the following statements can be made: 
C ^       C When    m   equals 0.0005 and    m   equals zero, one pole (point 36) 

a ß 
indicates a convergence, the second (point 37) a divergence and the 

i 
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remaining two (point 38) a stable oscillation.   This is approximately 

the situation existing at point 35 on the stability diagram (Fig. 13B) 
Q 

for the e.g. location six inches above the original.   As     m   is increased 
M 

from zero to positive infinity, the pole at point 36 continues as an increas 

ing convergence (point 48), i.e. , this transient mode tends to die out 

faster.    The divergent pole at point 37 moves from the right half plane, 

across the origin (point 34), becoming a convergence in the left half plane 
Q 

and reaching a limiting value at the zero (point 49) when    m   is increased 

to positive infinity. 

With respect to the two poles at point 38r they increase in fre- 

quency and move from the stable left half plane across the imaginary axis 

of neutral oscillations (point 33) into the region of unstable oscillations 

in the right half plane of the root locus diagram. 

It is interesting to compare the appropriate root locus plot to 

the equivalent locations on the stability diagram (Fig. 13B).   Notice in 

the root locus diagram (Fig,  .13-I-b) the divergent pole at point 37 becomes 

a zero root at point 34 which means that the E coefricien': nust equal zero 

at that point. 

On the stability diagram-point 34 is located by the intersection 

of the value of    m    = 0.0002 and the E = 0 line.   By closely inspecting 
C the stability diagram, it is evident that further increases in    m   result 

M 
in moving upward across the E = 0 line (point 34) into a region of stable 

oscillations, between point 34 and point 33, on the stability diagram. 
Q 

Additional increase of    m    results in moving across the R - 0 
M 

line (point 33) into the region of unstable oscillations. 

On the root locus diagram this means that the pole at point 37 

becomes a convergence (point 34) before the stable oscillation (point 38) 
Q 

becomes unstable at point 33.   Further increases in    m   on the root 
ß 

locus diagram cause the unstable oscillation to become more severe. 

r 
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To cover the remaining e.g. locations which are raised sufficiently 
Q 

to make    m    negative (Fig    13B), the root locus diagram Fig. 13-IV-b 
^ C C 

may be investigated.   The value of    m   is still 0.0005, but    ra    varies 

from zero to negative infinity on this diagram.    The poles located for 
Q 

m   equal to zero represent a convergence (point 39), a divergence (point 
** C 

45) and a stable oscillation (point 4 0 and point 41).   As the gain of    m 

is increased negatively, the poles at point 4 0 and point 41 start decreasing 

frequency as they approach the negative real axis along the direction of 

the arrows     Upon reaching the entry.point (point 47) the complex pair 

becomes tv» o equal, real, negative roots.   As     m   continues to be increased 

negatively, the two equal roots at point 47 split and move along the negative 

real axis in opposite directions with one terminating at the zero (point 43) 
Q 

when    m   is equal to negative Infinity.   Meanwhile, the other pole moves 

from   47   to the left on the real axis where it joins with the original con- 

vergent pole (formerly at point 39)    at the root locus break point (point 43. 

At point 42 they become rea^equal,negative roots and as    m   continues 

to increase negatively they break away from the real axis at point 42 

to become a complex pair, Indicating an osclhation of increasing 

frequency (point 44). 

In the meantime, there is always a divergent pole (point 45) 

which becomes increasingly unstable (point 46) as     m    is increased 

negatively. 

Again, reference is made to Table II for the roots of the quartic for 

tne short chord duct at /i - 0. 05, V - 18 mph and the e.g. located In the 

original position.   The modes of motion are two convergences and an 

unstable oscillation with approximately a ten second period and a seven 

second time to double amplitude.   This open-loop response, though unstable, 
Q 

seems to be more reasonable than the others.   In fact, if    m    Is decreased 
I* 

by raising the e.g. , the configuration is located in the small stable region 

shown on the stability diagram between point 33 and point 34 in Fig.  13B. 

Actually, this stable region is so small that it is probably insignificant. 
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7. Short Chord Duct ^=0.10 V - 36 mph 

Referring to the boundaries of the stability quartic (Fig. HA;; 

m   changes approximately 0.003 per inch of vertical e.g. movement 
^   C while    m    changes 0.0001 per inch of movement.   All the center of 

a 
gravity locations appear in the divergent region where the coefficients C, 

D and E are negative, except for the lowest location (point 54) where only 

C and E are negative.   The highest e.g. location has such a large negative 
f» 

value of    m   that it is not on the figure. 
M 

Starting in the region labeled'Unstable oscillation^'and decreasing 
Q 

m   along the line of centers of gravity,  the E coefficient changes sign 
C 

at point 52.   Slightly below point 52   the axis is crossed and    m becomes 
C ^ negative.   By increasing    m   negatively the C coefficient changes 

M Q Q 
sign at point 53 and the location of    m   and    m ,for the e.g. located siK 

inches below the originales finally reached (point 54).    Raising the e.g. 

still further, the D coefficient changes sign at point 53 and     m    continues 

to increase negativelv as the higher e.g. locations are approached 

(point 56). 

Referring to the stability diagram (Fig.  14B); all the e.g. locations 

fall in the region of dynamic instability.   The points are below^or on the 

negative side of,the E = 0 line. 

The chardctoristic modes of motion for these center of gravity 

locations can be obtained from the root locus diagram. 
C C 

Varying    m    negatively at    m   equal to 0.001 approximately 

covers the region in which the centers of gravity are located.    In Fig. 

14-IV-c when     n    equals zero, one pole is located slightly to the right 

of the origin and represents a divergence (point 60).   Another pole is located 

in the left half plane and represents a convergence (point 61).   The other 

two poles (point 62) are a complex pair located in the right half plane and 
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represent an unstable oscillation.   As the gain of    rn    is increased " ß 
negatively, the pole at point 61 moves to the right, and has a limiting 

Q 
value at the zero (point 63) when    m    is infinite.    This pole (point 61) 

remains in the stable region or left half plane and always represents a 
Q 

convergence which takes place with decreasing rapidity as     m   is 
ß 

increased negatively. 

The two poles at point 62 move along the direction of the arrows 
C " (point 65) as     m    is increased negatively.    The lightly damped unstable 

oscillation (point 62) increases frequency and becomes a neutral oscillation 

(point 64) and then an unstable oscillation with ever-increasing frequency 

(point 65). 

The predominating mode of motion for this quadrant is the divergent 

pole (point 60) located in the right half plane, or unstable region, when 

m    equals zero.   This pole moves to the right (point 66) and causes 
M Q 

the transient motion of the machine to become more unstable as    m 
ß 

is increased negatively. 

If the center of gravity is lowered considerably more than six inches, 
Q 

through some design change,     m    becomes^ positive.   Investigating the 
^ C C root locus using the extrapolated value of    m   =• 0.001 and     m   varying 

a pi 
from zero to positive Infinity, the root locus appears as Fig.  14-I-c. c 
The poles for    m    equal to zero,  Indicate a convercjent mode at point 67, 

an unstable oscillation at point 69, and the fourth pole (point 68) close 

to the origin is actually in the right half plane (shown by close analysis 
Q 

of Fig.  14-I-h or Fig.  14C-b   for    m    increased positively to 0,001 
P a 

while    m   equals zero) and represents a divergence.   As the gain of 
C ^ m    is increased positively from zero, the pole representing a divergence 

M 
(point 68) moves to the left toward the origin and into the left half plane 

to become a convergence (point 71).   The pole at point 67 always moves 

to the left (point 70) and remains in the left half plane as a convergence. 
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The complex pair (point 69) remains unstable and represents an oscil- 

latory mode of increasing frequency and instabilityjpoint 72). 
C C For the case of the actual e.g. locations,     m   positive and    m a ß 

negative, as shown on the stability diagram, the open loop response is 

a serious instability. 
c C Taking the specific case of the values of    m   and    m   at the 

c ^ a  original e.g. location (where     m    is admittedly very unstable), the 

roots of the characteristic equation (Table II) for /i = 0.10   V = 36 mph 

clearly define the modes of motion.   The convergence and stable oscilr 

latlon are strongly masked by an instability in the form of a divergence 

that doubles in amplitude in less than a second ( T - 0.8068 seconds). 

8.   Short Chord Duct     Artificial Stabilization Added     ^=0.10 V = 36 

For the short chord duct at /x = 0.10, there Is a dynamic instability 

in the form of a divergence. 

Analyzing the limit cases of pure rate feedback (T ■ 0) and pure 

attitude feedback ( T = oo), the root loci appear as in Fig. 15.   The pole 

at point 120 represents the instability due to the divergence and the 

zeros are located for increasing K from zero to infinity.   When T is equal 

to infinity, the pole and the zero located at the origin cancel each other. 

When T is equal to zero, the pole is located at negative infinity and the 

zero remains fixed at the origin. 

In the case of pure attitude feedback (Fig. 15a), where the pole 

cancels the zero at the origin (T equal to infinity) the remaining poles 

represent a stable oscillation ( point 115), a convergence (point 117), 

and the divergence (point 120).   As K is increased the stable oscillation 

(point 115) continues, but. increases in frequency (point 116).   The poles 

at point 1X7 and point 120 move towerd each other until they become 

equal roots at the root locus break point (point 119) in the right half 

plane.   As K is increased further, the poles break away from the positive 

t 
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reai axis    ,point 119) and become an unstable oscllJat'on, a neutral 

csclllation (point 121), and finally a stable oscillation with a limiting 

value at the zeros (point 118) in the left half plane. 

For the case of pure rate feedback (Fig.  15b), in which a zero 

(point 135) is located at the origin (T equal to zero), the same modes of 

motion prevail as before when K is equal to zero.   However, in this case, 

as K is increased, the poles at point 130 move toward the break point 

(point 131) and split so that one moves toward point 132 and the other 

| toward point 133.   The pole reaching point 133 joins the pole formerly at 

point 135 to break away from the real axis into the stable oscillation 

which reaches a limiting value at the zeros (point 134).    Meanwhile, the 

pole (point 137) representing the divergence can only become a zero root 

at point 136 when K is increased to infinity. 

In order to study the effects of various degrees of lag, an extra 

pole is situ.ited in the left half plane, very clo^e to the zero (point 136). 

As K is increased, it will Join with the pole at point 135 and break away as 

a staple oscillation terminating at the zeros (point 134).    The poles at 

point 130 remain as stable oscillations which move away from the real 

axis and continue as stable oscillations of ever-increasing frequency. 

As this extra pole is moved to the left, away from the zero (point 

136), the former description of the loci remains much the same except as 

it moves past the vicinity of point 131 toward point 132.   When the 

extra pole moves in this direction it pulls the loci of point 130 closer and 

closer to the real axis until, at some large negative location, the poles 

(point 130) join on the real axis similarly to that shown at point 131. 

The pole located at point 137 always moves to the zero (point 136) 

and the basic path is not influenced by the extra pole moving in the left 

half plane. 

$ 
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From this analysis it is possibl i to note that pure attitude feedback 

can stabilize this system (point 121 and point 118) for some value of gain, 

K, whereas pure rate feedback can only yield a zero root {point 136). 

The gyro-bar with either aerodynamic or mechanical damping 

represented by the transfer function for a lagged rate feedback, —— , 

should not be referred to as a method of providing rate and attitude feedback. 

These devices do not sense attitude and therefore provide only rate feedback 

with a phase lag.   While it may be true that a lagged rate feedback provides a 

frequency and phase characteristic similar to that of combined rate and 

attitude feedback, this is only true within a certain frequency range so 

that, strictly speaking, there really is no direct equivalence. 

For this reason the gyro-bar devices may be able to diminish the 

degree of dynamic instability of an aircraft in forward flight associated with 

a divergence due to a static instability,  (E < 0), but they can never completely 

stabilize the system.   This is exactly the case for the short chord duct at 

ji equal to 0.10 and the eg. in the original location.   Even at infinite gain, 

K, the divergent pole (point 137) can only be made a zero root (point 136). 

An understanding of the characteristic modes of motion for configura- 

tions of the Flying Platform with other combinations of values for    m   and 
C M 

m   not discussed is possible by reference to the other root loci provided 
a 

for all the quadrants of each stability diagram. 

J 



CONCLUS.ONG 

GeneraJly, th^ unstabiiiz^d, seven-foot diameter, ducted rotor 

Flying Platform exhibits a degree of control-fixed dynamic instability 

with either the long or short chord duct for all vertical center of gravity 

locations, 

In hovering, both duct configurations are dynamically unstable 
C due to the large positive values of    m  .    This instability is characterized 

by an unstable oscillation for all center of gravity locations considered. 

In forward flight, both duct configurations exhibit dynamic 

instability characterized by unstable oscillations for the lower e.g. 

locations and divergences for the higher e.g. locations. 

For any of the configurations, artificial stabillzaiion, using 

a rate feedback with a phase lag as provided by a g/ro-uar, is able to 

correct a dynamic instability when it is of the form of an unstable 

oscillation.   When the instab ilty is characterized by a divergence the 

lagged rate feedback device cannot completely overcome the instability. 

However, a combination of rate and attitude or pure attitude feedback 

can stabilize this divergence. 

The commonly used gyro-bars with aerodynamic or mechanical 

damping can only provide rate feedoack with a phase lag and never provide 

any of the attitude feedback required to completely correct the instability 

associated with a positive real root of a characteristic equation.   However, 

lagged rate feedback may ceuainly help to minimize this type of an 

instability even though it cen never completely overcome it. 

The large tilt angles oredicted for the faster trimmed flight speeds 

will become a problem for either duct configuration.   For the ducted rotors 

Ftudied, these excessive tilt angles cannot be attained because the pilot 

has insufficient control moment input to trim the large moments generated 

by the aircraft for the higher speeds. 

In general, for given e.g. locations the moments produced by the 

short chord duct were less than the long chord duct, but the moment could 

be reduced for eithPx duct by raising the center of gravity. 



Any attempt to increase the attainable forward speed by compromising 

between these duct designs or center of gravity locations does not 

produce significant or desirable results.   Reducing the moment by raising the 

e.g. causes the divergent mode to appear (point where the duct becomes 

statically unstable or j-— = E = 0) at successively lower flight speeds. 

■    ■■        ■■ 
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TABLE r 

CHAm^TKRICTIC  EQUATrONS OF THE ICUG C lOKD DUCT 7'> 

Center of gravity located In the original position (0.42c) 

Time to double or half amplitude P - Period of oscillation 

stability Cubic -Hovering 
\    4  0.31272  A + 0.0^25 A 

ß    m  V  ,  0 T    =   0.386k 

+ 0.37872 - 0 

Roots 
\    = -  0.81973 T - 0.32666 seconds 

Roots 
A.    - 0.2535  + 0.63069i 

x   - 0.2535 - 0.630691 

T = I.O563 seconds. 

P ■ 3.8495 seconds 

1    Stability Quartlc      fi *  0.05 

^4 + 0.53207 x
3    - 0.00007544 A

2 

V = l6 mph    T 

+ 0.055276 A   + 

= 0.39^4    1 
0.00868 = 0 I 

Roots 

I        Xl " " 0-:!3976 T ■ 1.956  seconds           j 

Roots 
|       A2 = " 0-63364 T m  0.43135 seconds            | 

Roots 
A3 « 0.12066 + 0.288671 

x " 0.12066 - 0.288871 
T = 2.265  seconds           |; 

P - 8.5786 seconds           j 

Stability Quartic      M = 0.10        V = 3^ mph    T = O.3809 

A
4+ 0.62572 x3    - 0.0031 x2        + 0.0282X      + 0.010023 = 0 

Roots 
|          A^ - 0.21140 

1 

T -- 1,2^86  seconds          | 

1 Roots 
1         X2" - 0„66036 T - 0.39973 seconds           1 

|Roots 
1        ^3= 0.12302 + 0.238051 

1      x4= 0.12302 - 0.238051 
I T - 2.1457 seconds 1 

P =10.054   seconds          | 

. .wiiwmmmm***wm* "»^SW^WSWiS««!«.»*^!^^ . 
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TABLE II 

CHARACTERISTIC fXJUATIONS OF THE SHORT CHORD DUCT 

Center of gravity located in the original position (0.42c) 

Time to double or half amplitude P -  Period of oscillation 

Stability Cubic    Hovering        ^= V = 0        r = 0.33926 

\3 + o.34493x2     + 0.014260x       + 0.073105 ■ 0 

Roots 
xl  -  -0.55575 T « 0.42304  seconds 

Roots 
A2 - 0.1054 + 0.346841 

A_ = 0.1054 - 0.346841 

T • 2.2306   seconds 

P =  6.1459   seconds 

Stability Quartlc     ^=0.05       V = 18 mph     T = O.35I 

x4+ 0.45072x3 + o.o4o44x2    + 0.02577x    + 0.0013625 ■ 0 

Roots 

x, ■ -0.05511 T • 4,4l4    seconds • 

Roots 
x2   -■  <).468Ji7 T ■ O.5192   seconds 

Roots 
X = + 0.03643 + 0.22682i 

A.4= + 0.03643 - 0.226821 

T • 6.677    seconds 

P ■ 9.7231   seconds 

■ Stabilltv Quartlc      M= 0.10 

X + 0.54622X3  + 0.00029XZ 1 

V = 36 raph 

- O.O5885IX 

T ■ 0.359 
- 0.006944. ■ 0 

Roots 
x1=+ 0.30838 T = C.8068 seconds 

Roots 
x2= - 0.13518 T - 1.8484 seconds 

Roots 
X3= - ®-35971 + 0.192851 
A4= - O.35971 - 0.192851 

T - O.69163 
P =11.6964 

seconds 
seconds 

L _) 
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TABLE rrr 77 

OVERALL VALUE OF diABIJJTt Li^LYATIVES 

FOR VARIOLfS C.  G.   LOCATION- 

f                                                                     LONG    CHORD    DUCT                                                          _| 

/ 

CG.   LOCATION C.G.   LOCATION C.G.   LOCATION C.G.   LOCATION 

0.5 FEET DOWH ORIGINAL 0.5 FEET UP  1^0 FEET UP 
7v "> \ % 

cv CmA 
cv 

/-0 0 0.1772 0 O.loOk 0 0.1435 0 0.1266 

A-.05 0.00P1 0.0510 0.002? 0.032k 0.0023 0.0136 0.002^ -  0.0051 

flm.lO 0.0005 0.0506 0.0014 0.0250 0.0022 - 0.0005 0.0032 - 0.0266 

SHORT    CHORD    DUCT 

/ 

/ 
-.0 

C.G.   IJOCATICN 

0.5 FEET DOWN 

m C, 
JL 

o.okG D 

C.G.   LOCATION 

ORIGINAL 

0.0U02 

C.G.   IJOCATION 

Ü.5  FEET UP 

C D 
^L 

0.0339 

C.G.   IQCA^ION 

1.0 FEET UP 

Ttt, 

0.0276 

^.05 0.00005      0.0239 0.0001 C 0121 0.0002 0.00013 0.0002 - 0.0119 

,101 0.0011 -O.OO99 O.OO.I7  -0-0272  0.002 -0.0^+6 0.0032 - 0.0021 

-i-;-« 
■ 
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Original e.g. location for 
gross weight platform 

0.42c 

0/1 

i I 
9[ 

Drag center ^ e.g. 
location of pilot 

'r Pilotstand-Qn 
platform location 

c/4 line^ 

:       C 

wsw \T\ wwwwsw^vvw v^ \ v \ v \ v 

FIGURE 1     FLYING PLATFORM 

v..,:■..>....■■ ^.MA   :..,y:.i-       ^r^x^m^ 
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All notation shown is positive except flight path 
angle to horizon , 7 . 

;»• 

FIGURE 3   BODY AXIS SYSTEM 

I 
f 



FIGURE 4   BODY AXIS INERTIA TERMS -  CURVED FLIGHT PATH 

■ ■    ■   .       ..■■„■■        ..■■. 
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Hover     Long Chord Duct 
cm   >   0     M=0 

I 

(86) m 
111 V^ ' ^S'SVsssv. vsvss vs-'Jss >»ffl. 

(81)   (83) 

Hover     Short Chord Duct 
cm>o     M=o 

(96) (90) 

VvVVv 

M^V^\y 

^0.1 

FIGURE 7   ROOT LOCUS      S.C.D. AND L.C.D.    HOVER 



e.g. locations 

0 0.5 ft. down 

O original 

H 0.5 ft. up 

^ I.0 ft. up 

LONG   CHORD   DUCT: 

STABLE_  OSCILLATIONS 
STARt AT C     - 0.0003. 

m 

UNSTABiX   OSCIJJATIONS 
START AT Cm    ■- 0.0056. 

85 

Ö.06L 

0.04 

0.02 

SHORT   CHORD   DUCT: 

STABLE OSCILLATIONS 
START AT C       ■ 0.000075 m 

fl 
UNSMLE OSCILLATIONS 

START AT C^    ^0.0024 

FIGURE   8 STABILITY DIAGRAM FOR HOVER C   > 0 
m 
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BOUNDARIES OF THE STABILITY QUARTIG 

0.0CS       0.012 

fi=  0.05 V« 16MPH 

FIGURE 1CA 
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CONVERGENCE OIVeAGCNCC 

0.02 

0.01 * 
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ÖWSTABLE   REGION 

0IVER6ENCE 

UNSTABLE 

REGION 

^11   LOCATIONS 

0  03  FEET DOWN 

0   ORIOJNAL 
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BOUNDARIES OF THE STABILITY l'T ' k|IC L.C.D,   /i = 0.10   V = 34 MPH 

FIGURE 11A 
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-0.008 -0.004 0  7r        0.004 0.008 0.012 

STABILITY   DIAGRAM L.C.D. \i » 0.10 V = 34 MPH 

FIGURE IIB 
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Cm     = +.0005 

voww-xvvvww wvvsv\\\vwsffl > m   nrKo 

13 

Cm     = +.0002 

v.\\\\Vv\\\Vv\v\'^.>.v,\v\v\\\\ -w [j    »U—DJ»®« 

Lifr —     J 

^XWWXVXVV^W^ V\\\\v\\\-''\v s\\v->, >v>v.v,{p ^ < [gHCa^.oi'o^f» 

/ 

FIGURE 11 - IV    ROOT LOCUS   L.C.D. Jt« 0.10   V = 34 MPH C < 0 
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-0.008 -0.004 0 Ü.004 

BOUNDARIES OF THE STABILITY QUARTIC      S.C. D. ^i 

FIGURE   13A 

0.008 
0.05   V - 18MPH 
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0.04 

0.03 

0.02 - STABLE  REGION 
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'm, 

-0.01 .   STABLE  REGION 
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0.03 

STABLE   OSCILLATION 
AND   CONVERGENCE 

UNSTABLE 

-0.04 

REGION 

DIVERGENCE 

CO. LOCATIONS 
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O    0.5   FEET   DOWN 

O     ORIGINAL 
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A      1.0  FEET  UP 
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(MPH)     (ft./sec.) 
40 J 

0.05 
Velocity Ratio 
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FIGURE 17   FORWARD SPEED VERSUS VELOCITY RATIO 
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FVALI/ATIQN OF STABILITY DERIVATIVES 

The stablltty derivatives were evaluated from data obtained by- 

wind tunnel tests conducted at the David Taylor Model Basin.   A two foot 

diameter, 2/7 scale, model of a ducted-rotor Flying Platform was tested 

in the DTMB low-speed wind tunnel (Ref. 2).   From the large variety of 

test runs made, portions of the data incorporating different duct designs 

were selected for the purpose of obtaining stability derivatives.   The duct 

designs chosen were:   one of relatively long chord length with a large 

leading edge radius, the other of shorter chord length and smaller leading 

edge radius (Fig. 2).   The latter was chosen because it represented a con- 

siderable design change from the large leading edge, long chord duct. 

The tests were conducted in the large settling chamber of the 

wind tunnel.   The balance was designed so that forces were measured 

perpendicular and parallel to the rotor shaft and the moments were 

measured about the supporting structure. 

n 
The moment was arbitrarily transferred to the so-called quarter 

chord point ot the duct.   The forces and moments so measured were T, 

H and Mc/4 (Fig. 3). 

All runs were made at constant velocity ratios as the angle of attack 

of the duct was varied.   The tests were conducted principally at only 

three different velocity ratios, making accurate determination of derivatives 

with respect to /i somewhat difficult. 

When summing all the forces and moments acting on the machine, it 

was necessary to Include the drag force and moment caused by the pilot 

in addition to the forces and moments measured In the wind tunnel,  (Fig, 3). 

This drag force, directed opposite and parallel to the relative wind, was 
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taken as acting through an assumed drag center of the pilot.   In this report, 

the drag center for the typical pilof Is located 3- feet above the pilot's 

feet. 

Various methods are available to determine the drag coefficient or 

equivalent flat plate area of the pilot.   A report published on the subject of 

airloads on human beings (Ref. 9), determines the drag coefficient of 

varoiS men in standing positions.   For the specific case of a six-foot , 

200 pound, clothed man, standing erect, with arms and feet together, the 

equivalent flat plate area was determined as approximately nine and one 

half square feet.   No attempt was made to modify this value due to the 

pilot stance with arms extended and feet apart, or to compensate for ad- 

ditional components, such as the cage around the pilot, instrumentation, 

fuel tanks, pilot helmet and equipment.   It was felt that attempts to make 

accurate modifications on the drag of the pilot, in any way, would not 

be worthwhile unless investigations were made of the air flow to which 

the pilot is exposed.   Therefore, for the purposes of this report, the 

value of the equivalent flat plate area of the pilot is assumed to be 

nine and one half square feet. 

The originöi center of gravity position for the complete machine 

at normal gross weight was arbitrarily located at the pilot's stand-on 

platform or 0.42c above the top of the duct.   Additional vertical center 

of gravity positions were selected above and below this original reference 

point (Fig. 16).   All moments were resolved about these center of gravity 

locations and the stability derivatives evaluated for each case.  (Table III). 

The important requirement in the evaluation of the stability deri- 

vatives is that, they be calculated at each initial, steady-state, equili- 

brium trim condition of the aircraft.    For this steady flight condition, the 

sum of all the aerodynamic forces in the drag direction must be equal to 

zero and the sum of the forces in the lift direction must equal to the gross 

weight of the aircraft. 
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Cn>/2 

iiQiisQntal 

Fig.  2 0   EquilibrJum Diagram 

In Fig. 2 0 where a is a small angle, the summation of forces 

in the drag direction is; 

1   HOUHQNrAi. * D     z (63) 

This equation may be solved to determine the variation of the 

equilibrium angles of attack with forward speed. 

Actually, this was accomplished graphically by plotting the 

horizontal force versus angle of attack for the various forward speeds 

(Fig. 21). 

jik 
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• equilibrium angle 
of attack 

Fig. 21. Sketch of a versus F.  for various u. 
n ~ 

Values of equilibrium angles plotted versus speed are shown for 

both ducts in Fig. 18 on page 117. 

For vertical equilibrium in the initial steady-state level flight 

condition,  (when the sum of the forces in the lift direction equals the 

gross weight) it is necessary to determine the variation of rotor angular 

velocity with forward speed from: 

L*W* {+Crem*€^mm^ß wR*(nR) (64) 

where R = 3.5 feet, W* 550 pounds and C   , C_ and a are obtained 
H       T 

from the wind tunnel data for the particular equilibrium angle and velocity 

ratio. 

Then, for vertical equilibrium the actual flight speed may be 

determined from: 

V^LL CLR 
(65) 

Actual values of i2R at the various velocity or tip speed ratios 

are listed for both ducts in Table IV. 

4$WS®£e$^93W£ 

aaBaH^alBaM M 
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TABLE IV 

ROTOR TIP SPEED (ft/sec) versus   yi 

Velocity   Ratio 

ßR   Short Chord Duct   I     555 

ßR Long Chord Duct   I     4Z3 

Wlien evaluating the stability derivatives, the forces and moments 

were put into coefficient form and plotted versus the angle of attack 

(measured in radians) and /i (dimensionless velocity ratio). 

Typical sketches in the evaluation of the derivatives are shown 

in the following Figures. 

ForGT : 

4k ■ equilibrium a 

■^TT -irx 
a (radians) 

Fig. 22   Sketch of C   versus a 

The short vertical lines, on the constant /i curves, indicate 

the previously calculated equilibrium angles for each duct at each 
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velocity ratio.   The stabiiitv derivative    T   must be evaluated at the 
a 

equilibrium points by taking the slope of the curves at these points. 

Actual values of    T   versus «are listed in Table V. 
a ^ 

TABLE V 

T   versus u. 
a 

Velocity Ratio M=0 ^l = 0.05 ß= 0A0 

T   Short Chord Duct 
a 

0 0.003 O.OIJ 

Q 
T    Long Chord Duct 
a 

0 0.0047 0.0133 

i 

c 
To obtain    T   it is.necessary to cross plot the former Figure 

ß 
of Cm veisus a. 

T 

I^ig, 23    Sketch of C   versus /i 

:.;■,,.;. A 
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the equilibrium angle for the particular ß. 

Occasionally it was necessary to extrapolate in order to obtain 

the hovering values Qg * 0) ol derivatives taken with respect to p. 

This can be avoided if more values at zero alpha are obtained at the 

higher ^ior by additional data at lower velocity ratios. 
C 

Values of    T   obtained from the data are listed in Table VI. 

Velocity Ratio 

T   Short Chord Duct 

T    Long Chord Duct 

For CH , 
a 

di- equilibrium a 

-0.8 

TABLE VI 
i 

'T   versus u 

M= 0 M= 0.05 

0.044 

-0.004 

ß= 0,10 

0.016 

-0„044 

T*— 
• 0.0S -Ar 

± 
■0.6 -0.4 

a (radians) 
-0.2 

-.   ♦ 

H 

Fig. 24   Sketch C^ versus a 
H 

Equilibrium angles of attack for j* « 0.15 were usually so 

large that they were not shown on the figures. 
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Values of    H   are listed in Table VII. 

TABLE VII 

C       versus    ß 
H 

a 

Velocity Ratio H=Q ^ = 0.05 ^ = 0.10 

C-,   Short Chord Duct 
a 

0 0 0 

1 C__   Long Chord Duct 
1    H a 

0 
■ '     ■■ ■ --i—^^^^^^^^^ 

0.0005       |   0.0015 

12b 

Cress plotting for C 
H 

H 

0.05 

-0.3 
-0.4 
-0.5 

A^ equilibcium a 

0.10 0.15 

Fig. 25   Sketch of CIT versus a 
H r 

Values of G,,    are listed in Table VIII. 

"* -*«-M^ 

1- 

"**-'^*-*( 
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C       versus     ß 
H 

Velocity Ratio ß~-0 /i= 0.05 /x ^ 0.10 

H   Short Chord Duct 0.044 0.078 0.108 

H     Long Chord Duct 1       * 0.118 0.118 0„136 

For C     : 
m 

a 

A    equilibrium o 

1.6 •1.2 -0.6 
o- (radians) 

-0.4 

m 

Fig. 26   Sketch of C    versus a 
m 

Values for C      are listed In Table DC. 
m 

TABLE IX 

C      versus a 
m r 

a 

Velocity Ratio 0 0.05 0.1C 

Q 
m   Short Chord Duct 

a 
0 0.00035 0.0023 

Q 
m   Long Chord Duct 

a 
0 0.0031 0.0046 
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f A = equilibrium a 
•■MjiBwuiRJI^i^ - 

Flg. 27   Sketch of C    versus a 

Values for    m   versus jiare listed in Table X 

C 
TABLE X 

m   versus u 

Velocity Ratio 

m  Short Chord Duct 

m   Long Chord Duct 

M = 0 

0.055(ext.) 

0.2 (ext.) 

^ = 0.05 

0.03 

0.06 

^= 0.10 

-0.01 

The evaluation of the derivative   C 

0-044 

H 
d (AG) 

may be obtained by; 

Cu w ^H.     /       =  ^H..  '  ?¥n> 'H P >   &R 

utrf*^' 

^frefore: 

- i*b).{tH) 

S£-SL. = C.   . "H. 

i_ = c 
Hr 

n^t^^ 

"(1(49) 

(66) 

(67) 

(68) 

ry 

%^#^^ 
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C C 
Values for    H, , ^ n. using the appropriate values of    H  , 

d [AQ) ß 
ii, z   /    , and T are listed in Table XI. 

H 

TABLE XI 

versus /i 
d U0) 

Velocity Ratio ^=0 /x= 0.05 /i= 0.10 

H,,    „.Short Chord 
d(Ag)       Duct 

0.000275 0.000486 0.000673 

CHd(Ae)LongChord 
x      '         Duct 

0.000735 0.000735 0.000848 

In the equations of motion the drag terms (Terms 5, 6 and 7 

on page 19) are developed as a result of the drag of the pilot and may be 

evaluated directly.   Their form in the equations may also be seen in 
i 

Fig. 20 where the coefficient form of this force (acting parallel to the 
2 

relative wind) is /i C-.' /2   (Eq. 13). 

Using the small angle assumptions, the pilot drag force, 
2 

ii. O'/l is resolved into components along the body axes.   The derivatives 

are taken with respect to |4and a and muat be evaluated at the initial 

condition, a - a   and a = a . 
0 2     0 

X component:  |i   C   ' 
2 

2      ^   , 
Z component: ji a   C   ' 

2 U 

Taking the derivatives: 

Xaxis:   C   ' P 3.   (ji) */iG   ' 
2       da 
0v   a (/) = o 
2 3e 

= ^D' 
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Z ^xis: 
"CD1 

2 

^        2 
0^                         D            o^o     I 

o 

2 
9   M*JLG*    -ßö2 c 
a»       2   D      §   D 

Kie forces In coefficient form are obtained by multiplying these 

terms by their respective perturbations: 

H-force contribution:  ^ CD' Ap.  (Term 5 page 19) 

Thrust force contributions: *, M0 CD'   Aß (Term 6 page 19) 

2 
0 .    CD' ^a (Term 7 page 19) 
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The remaining stability derivative to be evaluated is the over-all 

pitch damping derivative    m    ,     .     (Eq. .21g) 

c     = c 
cL(*6) (ZfAQ) 

lä. 
R (2 ig) 

The total damping moment in pitch for the unstabilized Flying 

Platform includes contributions from three sources, namely: 

1.   The pitch damping moment due to the change in H-force with 

pitch rate,    ÜSl.C 
H 

• a(A0) 
R       "d (A 9) 

2. The pitch damping moment of the rotor due to a pitch rate. 

3. The pitch damping moment of the duct due to a pitch ;3ta. 

Contributions (2) and (3) taken together are equai to the first ^erm 
C 

md(A9)   in Eq- 2ig- 

Contribution (1) is obtained by solving Eq. 68 for CH   . 
d( A 6) 

c 
Hd{*B) ^   R    Sir (68) 

The values of    H        ,    z       ß , R and   T are all known.   Then 

the pitch damping moment contribution due to change of H-force with 

pitch rate is: 

iK.C H. •dfae) 
d(*e) (Term A7 page 21) 

Contribution (2) is obtained by using the expression developed 

lr; the Appendix of Ref. 4 for the moment generated by the rotor due to 

a pitch rate 

1 
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/€  W 

where cR is the average chord of the rotor blade. 

Contribution (3); the pitch damping moment of the duct due to a 

pitch rate may be derived in various ways. 

The momrnt produced by this contribution is equal to the time 

rate of change of angular momentum.    For a constant pitch rate, this is 

equal to the time rate of change of moment of inertia of the slipstream 

at the duct exit which is equal to the rate of mass flow times the square 

of the radius of gyration for the duct exit area about the pitching axis. 

( A 9) - pitch rate about 

Y axis at top of 

duct. 

rrR      - duct exit area 

c - duct c^ord length 

V„       - slipstream velocity 

at duct exit, 

This .gives: 

dt dt 

^~(*B){pw*\)(£L2+c*) 



prrRV       =■ rate of mass 

» 
R" 2 
— + c      « square of the raaius of gyration for the duct exll area 

The duct exit velocity is equal to (See Appendix III): 

rrR* p 

TliCrefore the pitch damping moment in coefficient form is: 

The pitch damping derivative is: 

where w is equal to the aircraft relative density factor m/ptrR^R 

For the long chord duct when R « 3.5 ft, and c - 1.75 ft, 

The expression for contribution (3) is: 

C2/R2 - 1/4 

c 
d(Le) 

bocr 
2 ur 
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The sum of the three moment contributions gives the total theoretical 

pitch damping moment used in this Report. 

It is recognized that this theoretical pitch damping moment is probably 

too large, since it is not very likely that all three contributions provide their 

full theoretical value for the cases of the relatively short chord ^ucted rotors 

studied.   In any event, this total value appears to be small compared to the 

amount required to produce desirable stability characteristics.   Therefore, 

the stability characteristics together with the effects produced by additional 

damping were investigated and are iiscussed in this Report. 

if 



The expression for duct exit velocity may be developed from 

the so-called simple momentum theory of ducted-propellers by utilizing 

the common assumption th*t the velocity of the air at the duct exit 

is equal to the final slipstream velocity (V    ,   ' V   ). 
exit       öD 

The analysis Is restricted to the inviscld, incompressible, 

static case and utilizes the ideal ducted propeller combination with an 

"actuator cisk" and a simple cylindrical shroud. 

^A,     KA £    '£ 

The velocity V is the same on both sides of the actuator dl 

because of the requirement of continuity. 

.   The total thrust is: 

'•«•*rVf« 

Vtiliztrq the assumption of no slipstream contraction for a 

ducted pivpeller A    ^ A= A   . 

By continuity: 

ApV^     A    v 
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